Отзыв

официального оппонента на диссертацию Феоктистова Александра Геннадьевича «Организация предметно-ориентированных распределенных вычислений в гетерогенной среде на основе мультиагентного управления заданиями», представленную на соискание ученой степени доктора технических наук по специальности 05.13.11 – «Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей»

Актуальность темы диссертации

Диссертация посвящена решению актуальной научной проблемы, состоящей в интеллектуализации процесса управления предметно-ориентированными распределенными вычислениями в гетерогенной среде.

Организация вычислений в таких средах требует учета различных критериев эффективности решения задач, предпочтений пользователей и владельцев ресурсов. Роль промежуточного звена между пользователями и множеством систем управления заданиями на удаленных вычислительных узлах, как правило, выполняет метапланировщик. Здесь можно упомянуть ряд известных проектов: PanDA (https://panda.gsi.de/), DIRAC (http://diracgrid.org), Ganga (https://ganga.web.cern.ch/ganga/), GridWay (http://www.gridway.org/), HTCondor-G (https://research.cs.wisc.edu/htcondor/). К настоящему времени известны многочисленные системы управления потоками работ в грид и облачных вычислениях: ASKALON, Kepler, Triana, Pegasus, DAGMan и ряд других.

Предпочтения пользователей и провайдеров ресурсов, внутренние политики администрирования, наличие локальных заданий обуславливают специфические требования к эффективному планированию с различными, часто противоречивыми критериями. Между предпочтениями отдельных пользователей и предпочтениями владельцев ресурсов могут возникать конфликты. Так, пользователи чаще всего заинтересованы в наискорейшем выполнении собственных заданий при минимальных затратах. В то же время политика администрирования ресурсов может быть направлена на балансировку нагрузки доступных ресурсов или на максимизацию доходов владельцев ресурсов, что противоречит предпочтениям пользователей.

В ряде исследований предпочтения участников вычислений обычно учитываются лишь частично: либо собственники ресурсов конкурируют за выполнение заданий, оптимизируя значения пользовательских критериев, либо главная цель состоит в эффективном использовании ресурсов и при этом предпочтения пользователей не принимаются во внимание.

В ряде работ используются мультиагентные экономические модели. Однако в известных работах не удается оптимизировать выполнение всего потока заданий.

Обеспечение требуемого уровня качества обслуживания в гетерогенной среде должно основываться на комплексном решении целого ряда проблем:

- гибком администрировании обслуживания заданий;
- учете специфики предметных областей заданий пользователей;
- планировании вычислений и распределении ресурсов в условиях наличия факторов неопределенности, например неточности пользовательских оценок времени выполнения заданий;

- обеспечении масштабируемости вычислений в разнородной среде.

Решение этих проблем с помощью широко используемых сегодня вышеперечисленных систем управления неосуществимо в полной мере, так как они изначально создавались для других целей.

В данной работе предлагается комплексный подход, основанный на использовании мультиагентных технологий управления заданиями и привлечении дополнительных знаний в процессе планирования вычислений и распределения ресурсов среды. Диссертация посвящена разработке совокупности моделей, методов, алгоритмов и инструментальных средств, интегрированных в рамках единой технологии предметно-ориентированных распределенных вычислений в гетерогенной среде.

Такой подход к организации распределенных вычислений направлен на согласование критериев эффективности решения предметно-ориентированных задач и предпочтений владельцев ресурсов с целью улучшения показателей качества обслуживания по сравнению с известными метапланировщиками, такими как GridWay и Condor DAGMan.

Исследование базируется на глубоком обзоре и последующем анализе опыта ведущих российских и зарубежных специалистов, имеющих отношение к решаемой проблеме.

Упомянутые выше аспекты позволяют сделать вывод об актуальности диссертации.

Структура работы

Диссертация состоит из введения, шести глав, заключения, списка используемых сокращений, библиографии и одиннадцати приложений.

В первой главе выполнен анализ подходов к построению моделей обработки заданий в распределенных вычислительных средах, наиболее близкими из которых являются методы и средства описания моделей выполнения пакетов прикладных программ и систем управления научными приложениями.

Определены ключевые особенности предметно-ориентированной вычислительной среды, оказывающие существенное влияние на процесс управления потоками заданий в такой среде.

На основе проведенного анализа предложена агрегированная модель для представления знаний о предметно-ориентированной вычислительной среде, являющаяся базовой основой для построения и интеграции совокупности моделей управления заданиями в гетерогенной среде.

Вторая глава диссертации посвящена формализации используемой вычислительной модели как фрагмента агрегированной модели среды.

Предложенная вычислительная модель используется для формулировки постановок задач, построения схем их решения, определения критериев качества выполнения вычислительных процессов и поддержки механизмов распределения ресурсов среды.

Для данной вычислительной модели сформулирована постановка задачи управления вычислениями в гетерогенной распределенной вычислительной среде, которая обеспечивает учет предпочтений владельцев ресурсов и их пользователей, а также существующих административных политик в узлах среды.

В качестве критериев качества выполнения заданий с точки зрения предпочтений владельцев ресурсов и их пользователей выбраны время, надежность, стоимость выполнения заданий, показатели эффективности использования ресурсов.

Для оценки показателей качества выполнения заданий разработаны соответствующие модели и механизмы многокритериального выбора.

В третьей главе предложена система классификаций вычислительных заданий.

Выполнен обзор известных подходов к классификации вычислительных задач и заданий. Основой системы классификации является модель концептуализации заданий, включающая специализированные модели и методы представления и использования знаний о заданиях и вычислительных ресурсах.

Разработана методика практического применения этих моделей и методов. Преимущества данной системы классификаций проанализированы с помощью имитационного прототипа классификатора заданий.

Проведены модельные и практические вычислительные эксперименты, продемонстрировавшие достоинства применения предложенных в диссертации модели и системы классификации заданий.

Использование представленных в третьей главе средств классификации заданий в качестве надстройки к системам управления заданиями позволяет существенно снизить неопределенность относительно свойств заданий и улучшить результаты распределения ресурсов.

Мультиагентный подход к управлению заданиями в гетерогенной распределенной вычислительной среде представлен в **четвертой главе**.

Проведен сравнительный анализ известных мультиагентных средств, используемых для управления распределенными вычислениями, сформулирована общая постановка задачи мультиагентного управления заданиями.

Для поддержки мультиагентного управления разработаны соответствующие модели и алгоритмы, а также предложен подход к распределению ресурсов агентами на основе проведения тендера вычислительных работ.

Предложены три модели тендера вычислительных работ, поддерживающие следующие уровни обслуживания на основе мультиагентного управления:

- модель, ориентированная на пользовательские критерии качества решения задачи;
- модель, учитывающая предпочтения владельцев ресурсов;
- модель, поддерживающая согласование пользовательских критериев качества решения задачи с предпочтениями владельцев ресурсов.

Экспериментальные исследования по оценке преимуществ разработанных моделей, алгоритмов и методов мультиагентного управления по сравнению с известными метапланировщиками выполнены на основе полунатурного моделирования процессов обработки потоков типовых научных рабочих процессов (Montage, CyberShake, Epigenomics, LIGO и SIPHT).

Пятая глава представляет технологию разработки и применения научных приложений в гетерогенных распределенных вычислительных средах.

Предложен подход к разработке распределенных пакетов прикладных программ для решения крупномасштабных задач в гетерогенных средах, которые могут включать вычислительные системы различного уровня (персональные компьютеры, серверы, кластеры, грид-системы, облачные платформы) и обеспечивать их интегрированное использование.

Предложенная технология, в отличие от известных, обеспечивает гибкость при выборе и настройке необходимой конфигурации вычислительной инфраструктуры в процессе разработки и применения масштабируемых распределенных пакетов прикладных программ, а также возможность подготовки и проведения экспериментов различного масштаба с использованием гибридной модели, интегрирующей модели облачных и грид-вычислений.

Применение результатов исследования при разработке распределенных пакетов прикладных программ представлено в **шестой главе**.

Приводятся научные и прикладные задачи, которые решены на основе распределенных пакетов прикладных программ, разработанных с помощью инструментальных комплексов DISCOMP и Orlando Tools, а также в экспериментальной грид-среде, созданной на базе инструментального комплекса DISCENT.

Рассматриваются пакеты для выявления критических элементов отраслевых систем энергетики и решения задач складской логистики.

В данной главе проведен экспериментальный анализ, который показал масштабируемость вычислений, выполняемых с помощью разработанных пакетов, при росте уровня используемых ресурсов среды. Анализ продемонстрировал сокращение сроков решения задач за счет автоматизации основных этапов подготовки и проведения экспериментов.

В заключении приведены краткие выводы по основным результатам диссертации.

Главный результат заключается в разработке моделей, алгоритмов, инструментальных средств и технологии мультиагентного управления предметно-ориентированными распределенными вычислениями в гетерогенных распределенных вычислительных средах.

Работа написана хорошим языком с четкой логикой изложения.

Автореферат полно отражает содержание диссертации, ее структуру, положения и выводы.

Научная новизна, обоснованность, достоверность, теоретическая и практическая значимость полученных научных положений, выводов и рекомендаций

Новизна научных положений и выводов диссертации определяется тем, что разработан подход к организации предметно-ориентированных распределенных вычислений в гетерогенной среде на основе мультиагентного управления заданиями.

В рамках этого подхода основой мультиагентного управления заданиями являются оригинальные модели и алгоритмы представления знаний о среде и планирования вычислений, а также поддержки экономических механизмов регулирования спроса и предложения ресурсов.

Важную роль в снижении уровня неопределенности в процессе распределения заданий играет предложенная специализированная система классификации заданий.

Теоретическая значимость результатов исследования состоит в развитии методологического базиса в рамках теории управления заданиями в параллельных и распределенных системах, который включает модели, методы и алгоритмы предметно-ориентированных распределенных вычислений в гетерогенной среде на основе мультиагентного подхода.

Практическая значимость полученных научных положений, выводов и рекомендаций состоит в разработке инструментальных средств и технологических решений, обеспечивающих реализацию и поддержку предложенных теоретических положений.

Применение полученных результатов исследования позволяет обеспечить управление заданиями в предметно-ориентированной гетерогенной среде на основе согласования заданных критериев эффективности решения задач и предпочтений владельцев ресурсов.

Практическая ценность результатов исследования подтверждается результатами вычислительных экспериментов в рамках большого числа проектов Министерства науки и высшего образования РФ, РФФИ и Президиума РАН, а также других ведомств, фондов и организаций. Применение на практике результатов диссертации обеспечивает возможность организации и использования вычислительной среды требуемой конфигурации для решения актуальных научных и прикладных задач.

Достоверность и обоснованность положений и выводов диссертации подтверждается соответствием теоретических и экспериментальных результатов, полученных в рамках имитационного и полунатурного моделирования.

Предложенные в рамках данной работы модели, алгоритмы и инструментальные средства успешно применены в решении ряда фундаментальных и прикладных задач.

Апробация работы

Основные результаты по теме диссертации широко представлены на профильных международных, всероссийских и региональных конференциях, а также достаточно полно опубликованы в 76 научных работах.

В их числе 22 публикации в российских журналах, рекомендованных ВАК РФ для опубликования научных результатов диссертаций, и 22 научные работы, проиндексированные в международных базах цитирования Web of Science Core Collection и Scopus. Автором получено 19 свидетельств о государственной регистрации программ для ЭВМ.

Рекомендации по применению

Полученные в диссертации результаты могут использоваться в деятельности научно-исследовательских и образовательных организаций (ИСП РАН, ФИЦ ИВТ, ИВМиМГ СО РАН, ВЦ ДВО РАН, ИСЭМ СО РАН, ИГУ и др.), а также представляют интерес для широкого круга специалистов в области мультиагентного управления заданиями в гетерогенных средах.

Замечания по диссертации

1. В алгоритме планирования вычислений на основе непроцедурной постановки задачи (раздел 2.2) каждый новый модуль включается в параллельно-ярусную схему решения задачи

при выполнении всех необходимых для этого условий и размещается на текущем формируемом ярусе схемы.

Реализация в алгоритме дополнительного перемещения модулей на другие ярусы схемы после ее построения с учетом уровня доступных ресурсов, возможно, позволило бы в некоторых случаях оптимизировать использование ресурсов, когда их число меньше ширины отдельных ярусов схемы.

- 2. В главе 3 следовало бы особо выделить тот аспект, что оценки времени выполнения программ применяются в системе классификации только для прогнозирования времени прохождения пользовательских заданий в очередях менеджеров ресурсов среды и не используются для коррекции пользовательских характеристик заданий.
- 3. В диссертации разработаны модели тендера вычислительных работ, базирующиеся на использовании комбинаторного аукциона Викри (глава 4).

При сравнительном анализе аукциона Викри и английского аукциона сделан выбор в пользу первого из аукционов (раздел 4.4).

Следовало более убедительно обосновать, почему в задаче мультиагентного управления предпочтение отдано аукциону Викри. Ведь хорошо известно, что основным недостатком комбинаторных аукционов является их высокая вычислительная сложность.

4. Эксперименты, представленные в четвертой главе с целью сравнительного анализа распределения ресурсов разработанной мультиагентной системой и известными метапланировщиками, выполнены с использованием достаточно ограниченного числа вычислительных ресурсов, в частности, двух пулов ресурсов с 8 и 10 виртуальными машинами (раздел 4.8).

Проведение более масштабного эксперимента позволило бы более адекватно оценить преимущества предложенного мультиагентного управления и степень масштабируемости вычислений.

5. В разделе 5.3, посвященном инструментальным средствам создания и применения распределенных пакетов прикладных программ, рассматривается реализация WPS-сервисов (Web Processing Service). Они представляют собой отдельные модули схемы решения задачи и используются для выполнения ресурсоемких вычислений с помощью разрабатываемых в инструментальном комплексе Orlando Tools пакетов.

Из текста диссертации не ясно, как учитывается время выполнения сервисов при оценке времени реализации схемы решения задачи.

Отмеченные выше недостатки, в целом, не снижают высокого научного уровня и практической значимости работы.

Заключение

Диссертация Феоктистова Александра Геннадьевича представляет собой законченную научно-квалификационную работу, в которой содержится решение проблемы, имеющей существенное значение для теории и практики управления предметно-ориентированными распределенными вычислениями в гетерогенных вычислительных средах.

Тема, содержание и результаты диссертации в полной мере соответствуют областям исследования паспорта специальности 05.13.11 — «Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей».

Работа выполнена на высоком научно-практическом уровне и свидетельствует о высокой профессиональной квалификации автора в области математического и программного обеспечения распределенных вычислительных систем.

Таким образом, считаю, что представленная диссертационная работа Феоктистова Александра Геннадьевича «Организация предметно-ориентированных распределенных вычислений в гетерогенной среде на основе мультиагентного управления заданиями» отвечает всем требованиям ВАК РФ, предъявляемым к диссертациям на соискание ученой степени доктора технических наук по специальности 05.13.11 — «Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей», а ее автор Феоктистов Александр Геннадьевич заслуживает присуждения ему искомой ученой степени.

Официальный оппонент

доктор технических наук, профессор, заведующий кафедрой Вычислительных технологий Федерального государственного бюджетного образовательного учреждения высшего образования Национальный исследовательский университет «МЭИ»

T

Топорков Виктор Васильевич

«<u>18</u>» марта 2022 года

начальника и в предоставления в предост

Cepiero

Специальность, по которой официальным оппонентом защищена диссертация:

05.13.15 - «Вычислительные машины, комплексы и компьютерные сети»

111250, Россия, г. Москва, ул. Красноказарменная, 14.

Тел.: +7(495)362-71-45, +7(916) 717-04-42, e-mail: ToporkovVV@mpei.ru