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So far we have dealt with a set that had an a priori given topology.

In this lection we consider two situations where a set is given a topology

which is natural under the circumstances.

These are the "weak topology" and the "quotient topology" .

Let us briefly describe the starting point for the introduction of these two
topologies.

So let X be our set. For the weak topology the situation is the following.

Cna6aﬂ Nan MHNUnanbHasa TONONOrnA, NAN TONOJOrNA NOPOXAEHHAA
CEMeiCTBOM OTObpaXkeHwUi

We are given a family {Yj, f;};c; of pairs, each consisting of a topological
space Yiandamap f; : X — Y.

Any topology of X that makes all the f; continuous, is said to be admissible.
Evidently, the set of admissible topologies on X is nonempty, since the
discrete topology is such a topology.

We will see that there exists a topology w on X such that every admissible
topology is stronger or equal to w.
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®dakTop-TOMnoIOrNs

For the quotient topology, the setting is reversed.
We are given a family of pairs

{)/h f}}iEl

where each Y; is a topological space and f; : Y; — X.

As before we call a topology on X admissible if it makes all the f;
continuous.

This time the indiscrete (trivial topology), certainly is admissible.

We will see that there exists a topology T on X such that the admissible
topologies are those topologies which are weaker or equal to 7.

Before moving to the detailed examination of the weak and quotient
topologies, let us remark that the intersection of any nonempty family of
topologies on a set X is a topology on X (it is the greatest lower bound for
the partial order determined by the relation "weaker than").

However, the union of two topologies need not be a topology. First let us

examine the weak topology.
FO. 3. Jlunke (MiHcTuTyT AnHamukn cncT VTN el o ECET BT IT EY [N 4 mapTa 2011 r. 4 /38



Cnabasi unn nHMLMansHas Tonosorus

DEFINITION 1.2.1 Let {Y;, fi}ies (I is an arbitrary index set) be a family
of pairs where Y; is a topological space and f; : X — Y; is a map. The
"weak topology"(or "initial topology") on X, generated by the family
{fi}ie1, is the weakest topology on X that makes all the functions {f;};c/
continuous. So it is the topology generated by

F={f(V):iel, VCYisopen} (i.e. F=]JFf '(rv)).
icl
This is a subbase for the weak topology. In fact we can economize in the
definition of the subbase for the weak topology and take

Fi={f"YV) : i€l, VCY;is subbasic open}.

This too is a subbase for the weak topology. We denote the weak topology
on X generated by the family {f;};c; by w(X,{fi}ic/) or simply by w if no
confusion is possible. Of course a base for the weak topology is given by all
the sets of the form N_, £ (V) with V; € 7y, and n > 1 an arbitrary
integer.
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Cnabasi unn nHMLMansHas Tonosorus

PROPOSITION 1.2.2 If a set X is furnished with the weak topology
w(X, {fi}ier), then x, — x if and only if for all i € | we have
f(xa) — f(x) in Y.

Proof.

= Because each f; is w-continuous, x, — x implies that f(x,) — f(x)
for every i € [.

«<: Let U=n",f '(V;) be a basic neighborhood of x (Definition 1.2.1).
Since by hypothesis for each i € I, f(x,) — f(x) in Y;, we can find «;
such that for each o > «;, we have x, € f~1(V;). Choose @ > q; for all

i €{1,...,n} (Definition 1.1.18). Then for & > @&, we have x, € U and so

Xo — X.

v
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Cnabasi unn nHMLMansHas Tonosorus

PROPOSITION 1.2.3 If Z is a topological space, X is a set furnished with
the weak topology w(X,{fi}ic/) and g : Z — X, then g is continuous if
and only if f; o g is continuous for each i € /.

Proof.

= Immediate from Corollary 1.1.30(b).

<:If z, — zin Z, then fi(g(z)) — fi(g(z)) for each i € I. By virtue of
Proposition 1.2.2, this implies that g(z,) — g(z) in X, hence g is
continuous (Theorem 1.1.29).

FO. 3. Jlunke (MiHcTuTyT AnHamukn cncT VTN el o ECET M IT EY [N 4 mapTa 2011 r. 7/ 38



Cnabasi unn nHMLMansHas Tonosorus

EXAMPLES 1.2.4 (a) Let Y be a topological space, X C Y and let

i: X — Y be the map i(x) = x (embedding of X into Y) . The trivial
family (Y, /) induces a weak topology on X. A subbase for this topology is
given by

F={ir}(V) : VCVYisopen}={VNX : VCYVY isopen}.

In fact F is already a topology, the subbase (or relative) topology on X
(Example 1.1.3(e)).

(b)

(b) Let T be a set and let X be any set of functions f : T — R. For every
te T, let e;: X — R be defined by e;(f) = f(t), f € X. Then the family
(R, {et}teT) induces a weak topology on X. By Proposition 1.2.2,

fo — f if and only if £,(t) — f(t) for all t € T (i.e. weak convergence is
equivalent to pointwise convergence).

FO. 3. Jlunke (MiHcTuTyT AnHamukn cncT VTR BTSN o ECET BT IT EY [N 4 mapTa 2011 r. 8 /38



Cnabasi unn nHMLMansHas Tonosorus

REMARK 1.2.5 When the spaces Y; =R, i/ € | , then a subbase of
w(X, {fi}ier) is given by all sets of the form

Ui(x,e) = {y € X @ fily) — fi(x)| < e},

where i € [, x € X and € > 0.
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Cnabasi unn nHMLMansHas Tonosorus

Now we will investigate a little the separation character of the weak
topology. For this purpose we need the following definition.

DEFINITION 1.2.6 Let X be a set and {f;};c; be a family of functions
each of which has domain X. We say that the family {f;};c; is
"separating"(or "total" ), if for each pair of points x,y € X, x # y there
exist i € I such that fi(x) # fi(y).
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Cnabasi unn nHMLMansHas Tonosorus

PROPOSITION 1.2.7 If X is a set, f;: X — Y}, i € I, a separating family
of functions and for each i € I, Y; is Hausdorff then X furnished with the
weak topology w(X, {f;}ic/) (denoted by X, is also Hausdorff).

Proof.

Let x1,x2 € X x1 # x2. Since by hypothesis the family is separating, we

can find an i € I such that f(x;) # f(x2). Because Y; is Hausdorff, there
exist VeN (fi(xk)), k = 1,2 such that Vi N Vo = 0. Then £ 1(V4),

k = 1,2, are disjoint weak neighborhoods of x1, x5. So X,, is Hausdorff. [J )
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Cnabasi unn nHMLMansHas Tonosorus

Let X beasetand AC X. Let f;: X — R, €/, be a family of functions.
On A we have two topologies. One is the relative weak topology generated
by {fi}ic/ (i.e. the restriction of the weak topology w(X, {fi};c;) on A) and
the other is the weak topology generated by fi|a,/ € /.

It is natural to ask whether these two topologies are the same.

The next proposition shows that the answer to this question is affirmative.

PROPOSITION 1.2.8 If X is a set, f;: X — R, i € I, are functions and J
AC X,

then

w(X, {F})|a = w(A, {fila}icr). J

Proof.

Using Proposition 1.2.2 we can check that the two topologies have the
same a convergent nets and so are identical.(]
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Cnabasi unn nHMLMansHas Tonosorus

We will prove some more simple results about the weak topology. For this
we need the following definition-notation.

DEFINITION 1.2.9 Let (X, 7) be a topological space. We introduce the
following two sets: J

(a) C(X,7) or C(X) is the space of all continuous functions f: X — R; ]

(b) Cp(X,T) or Cp(X) is the space of all bounded continuous functions J
f:X—R
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Cnabasi unn nHMLMansHas Tonosorus

PROPOSITION 1.2.10 w(X, C(X)) = w(X, Co(X)). J

Proof.

Evidently w(X, Cp(X)) € w(X, C(X)). Let U be a subbasic set for
w(X, C(X)). Then

U=U(f,x,e)={y e X : |f(y) — f(x)| <el},
where f € C(X), x € X and € > 0. Set
g(z) = min{f(x) + ¢, max{f(x) —e,f(x)}}.

Clearly g € Cp(X) and U(g, x,e) = U(f, x, ). Therefore
w(X, C(X)) C w(X, Cp(X)) and so finally equality follows. [
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vinvigvidaJ/ibriax 10loAul via v olivJinc pel y/iAaApnbic
Cnabasi unum nHuunanbHas Tononorusi [lslelaysElTea it

In the next theorem we use weak topologies to characterize completely
regular spaces.

THEOREM 1.2.11 A topological space (X, 7) is completely regular if and
only if 7 = w(X, C(X)) = w(X, Cp(X)).

Proof.

= First note that w(X, C(X)) C 7. Let x € U € 7 and since X is
completely regular, we can find f € C(X) such that f(x) =0 and f|yc = 1.
Then theset V ={y € X : f(y) <0} is a w(X, C(X))-neighborhood of
x and V C U. Therefore U is w(X, C(X))-open and so 7 C w(X, C(X)),
hence 7 = w(X, C(X)) = w(X, Cp(X)). <: Let C C X closed and x ¢ C.
Since C€ is weakly open, we can find U C C€ with

U=Ni_1{y € X :|f(y) — f(x)| < 1}, where f € C(X). Let

gk(x) = min{1, |fi(z) — fi(x)|}, k€ {l,...,n} and set

g = maxi<k<n&k. Then g: X — [0,1] is continuous and satisfies g(x) =0
and g|c = 1. Therefore X is completely regular (Definition 1.1.55). OJ

FO. 3. Jlunke (MiHcTuTyT AnHamukn cncT VTN el o ECET BT IT EY [N 4 mapTa 2011 r. 15 / 38



yvinunLQvid/ibrd~a 10l viAa v phibJinc petl yJiapnoic
Cnabasi unum nHuunanbHas Tononorusi [lslelaysElTea it

COROLLARY 1.2.12 If (X, ) is a completely regular space, ]

then

Xo — X

in X if and only if
f(xa) = f(x)

for all f € Cp(X).
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Now we will present a very useful weak topology, which is the "product
topology" .

In fact we will show that up to a homeomorphism this is the only Hausdorff
weak topology.

So let | be any index set and let (Xj, 7j);e; be a family of topological

spaces. Let
x=1[x
icl

the Cartesian product X;. A generic point x € X is described by

x = (xi)iel

with x; € X; for all i € /.
If X; = V forall i € /, then we write [];., X; = V/ and is the set of all
functions from / to V.
Let p; be the projection from X onto the i*"-coordinate space X;,
i.e.pi(x) = pi((xj)jer) = xi for any € I.
Then letting f; = p;, we can define the weak topology w(X, {fi}ic/).
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Tonosorusi nponssegeHnst

DEFINITION 1.2.13 Let (X;, 7;);ies be topological spaces and
x =[x
i€l

The "product topology"on X is the weak topology w(X, {pi}ic/), i-e. is the
weakest topology making all the coordinate projections continuous.
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Tonosorusi nponssegeHnst

EXAMPLE 1.2.14 Take the Cartesian product of just two spaces, each a
copy of the real line with the usual topology. Then the product topology
equals the usual topology on R? (the metric topology known from
multivariable calculus), since either the set of all open balls or the set of all
open rectangles gives a base for the same a topology. (An open ball is the
union of all the open rectangles it includes and conversely).
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Tonosorusi nponssegeHnst

REMARK 1.2.15 From Definition 1.2.13 and Definition 1.2.1 it follows that
a base for the product topology of [];., X is the collection of sets [[;., U,
where all the sets U; are nonempty open subsets of X; with U; = X; for all
but a finite number of indices of i € /. Hence a product of open sets need
not be open. However, a product of closed sets is always closed. Indeed
note that [[;c, G = ;g p; 1(C;) and the latter set is closed being the
intersection of closed sets. Also the coordinate projection maps

pi: X = HjelXj — Xj, i € I, are continuous open maps. From
Proposition 1.2.7, we see that if the coordinate (factor) spaces X are
Hausdorff then so is X = [, X; with the product topology. In fact

X = [1;e; Xi with the product topology is Hausdorff if and only if each X;
is Hausdorff. Similarly, X = [];., Xi with the product topology is regular
(resp. completely regular) if and only if each factor space X;, i € I, is
regular (resp. completely regular) . However, the product of normal spaces
need not be normal. On the other hand, if X = [];., X; with the product
topology is normal, then each factor space is normal. Finally, it is easy to
verify that for any sets A; C X;, i € I, we have HI-E,Aii = [Lic; Ai (from
this follows immediately that the product of closed sets is closed) .
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Tonosorusi nponssegeHnst

As we already mentioned any Hausdorff weak topology is homeomorphic to
a product topology. Let us make this more precise.

PROPOSITION 1.2.16 If X isa set and f;: X — Y;, i € |, a separating
family of functions into the Hausdorff topological spaces Y;, i € I, J

then

the map x — (fi(x));es is a homeomorphism from X with the w(X, {fi}ic/)

topology onto a subspace of ;. Y; with the product topology.

Proof.

Since by hypothesis {f;};c; is separating, the map x — (fi(x))ie/ is
one-to-one. Also by virtue of Proposition 1.2.2, it follows that x, — x in X
if and only if (fi(xa))icr — (fi(x))iesr in [I;c; Yi- So both f and =1 are
continuous.
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Tonosorusi nponssegeHnst

Using this proposition 1.2.16 together with Remark 1.2.15 which says that
regularity and complete regularity are preserved by products and since both
separation properties are hereditary (see Remarks 1.1.54 and 1.1.57), we
obtain the following strengthened version of Proposition 1.2.7.

PROPOSITION 1.2.17 If X isaset and f;: X — Y}, i € |, is a separating
family of functions with range spaces Y;, i € I, which are regular (resp.
completely regular), then the weak topology w(X, {fi}ic/) is also regular
(resp. completely regular).
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Tonosorusi nponssegeHnst

Recall that given a function f: X — Y its graph is the set
Grf={(x,y) e X xY : y=f(x)}

PROPOSITION 1.2.18 If X, Y are topological spaces, Y is Hausdorff and
f: X — Y is continuous, then Gr f is closed in X x Y with the product
topology.

Proof.

Let {(Xa,Ya)}acn be a net of elements in Gr f and assume that

(Xas Ya) — (x,¥). Then since f is continuous f(x,) — f(x). Also y, — y
and for all & € D,y, = f(x,). In the Hausdorff space the limits are unique.
Hence y = f(x), i.e. (x,y) € Gr f , which proves the closedness of Gr f.

v
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Tonosorusi nponssegeHnst

For R*-valued semicontinuous functions the following sets are important.

DEFINITION 1.2.19 Given a set X and a function
f: X - R*=RU{£o0}, the epigraph (resp. hypograph) of f is the set
defined by

epi f ={(x,\) e X xR : f(x) <A}

(resp.
i hyp f ={(x,\) e X xR : f(x) > A}

FO. 3. Jlunke (MiHcTuTyT AnHamukn cncT VT RIS el o ECET BT ITEY [N 4 mapTa 2011 r. 24 / 38



PROPOSITION 1.2.20 If X is a topological space and f: X — R*, )

then

f is lower semicontinuous if and only if epi f is closed in X x R with the
product topology.

Similarly for upper semicontinuous functions with epi f replaced by hyp f. J

= Let {(Xa, A\a)}acD be a net in epi f and assume that (x4, Aa) — (x, )
in X x R. We have f(x,) < A, and because f is lower semicontinuous,
f(x) <liminf f(xo) < A (Proposition 1.1.37) and so (x, A) € epi f, which
proves that epi f C X x R is closed.

<: Consider the function ¢: X x R — R* defined by ¢(x,\) = f(x) — A
Then for every u € R,

{(;A) € XX R = p(x,A) < pu} =epi f+(0,p),

hence the set is closed and this by .Definition 1.1.34 implies that ¢ is lower
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Directly from the definition of the product topology as a weak topology
(Definition 1.2.13) and Proposition 1.2.3, we have

PROPOSITION 1.2.21 If X, ({Y;}ic/ are topological spaces, fi: X — Y,
i €l, are maps and f: X — [[;c, Vi, is defined by f(x) = (fi(x))ie/, then
f is continuous if and only if each f; is continuous.
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Onpenenernne @akTop-Tononorum

So let X be a set, {Y;};c; a family of topological spaces and f;: Y; — X,
i € 1, a family of maps. We are looking for the strongest topology on X
which makes all the f; continuous.

DEFINITION 1.2.22 The "quotient topology” on X, denoted by 7 is the
topology defined by

Tq={UCX : foreveryicl, f (U) isopenin Y;}.

1

This is the strongest (largest) topology on X making all the f; continuous.

v
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Ceoiictea ®PakTop-Tonosiorun ansi ogHoro otobpaxkenus f: Y — X.
VnobHo BBECTU 0BO3HAYeHMe

A" = (f(A),
raoe A — nNpom3BosibHOE MHOXECTBO B Y. BbINOMHAIOTCA COOTHOLIEHUS
A* DA f(A")=1(A), A=A
OTtmeTum naTe ceoiicte PakTop-TOnosornm:

(1) Ons kaxgoro mHoxectBa A C Y nMeeT MeCTo paBeHCTBO

F(YAA") = F(Y)\F(A)

(2) MHoxectso f(A), rae A C Y, OTKpbITO TOrAa 1 TONIbKO TOrAa, KOrAa
OTKPLITO MHOXeCTBO A*.
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dakTop-Tononorus

I—Ipo,u,omKeHme CBOIICTB (bl/lHaJ'IbHOI7I TOonoJiornu

(3) OTobpaxeHne f OTKpPLITO TOrAa U TOJMLKO TOTAA, KOr4a BMECTE C
KaXkablM OTKpbITbIM MHOXecTBoM U B X oTkpbiTo 1 mHoxecTeo U*. Ecnn
f — oTkpbIToe oTobpaxkenne n U npoberaet 6asy OKpeCTHOCTENR TOYKM X,
To cuctema mHoxecTs f(U) obpasyer 6asy okpectHocTeii Toukm f(x).

(4) Ecnu f otkpbiTo n otobpaxaeT Y Ha X, To MHOXecTBO f(A) 3aMKHYTO
TOrfa 1 TONbKO TOTAA, KOTAA 3aMKHYTO MHOXeCTBO A*.

(5) OTobpaxeHrne g: X — Z HenpepbiBHO TOTAA M TONLKO TOrAa, KOTAA
oTobpaxeHne g o f: Y — Z HenpepbIBHO.
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dakTop-Tononorus

REMARK 1.2.23 It is easy to check that 74 given in Definition 1.2.22 is
indeed a topology. If / ia singleton, Y=Y and i=f: Y — X is
surjective, then f is called the "quotient map”, if X is endowed with the
Tq-topology.
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dakTop-Tononorus

Convergence in 74 is not as easily described as convergence in the weak
topology.

On the other hand continuity has a nice description analogous to
Proposition 1.2.3.

PROPOSITION 1.2.24 If X {Yi}ies, {fi}ics and 74 are above, Z is a
topological space and g: X — Z, then g is 74-continuous if and only if for
every i € I, gofi: Y; — Z are continuous.

Proof.

= Obvious from Corollary 1.1.30(b).
<: Let V be an open set in Z and let U = g~ 1(V). For every i € I,

fH(U) = (g o £i)H(V)

and so f*(U) is open in Y. Then U € 74 and so g is 4-continuous.
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Now we restrict ourselves to the case when [ is singleton, Y; = Y and
f; = f: Y — X is surjective, which is what we have usually in practice.

PROPOSITION 1.2.25 If Y, X are topological spaces and f: Y — X is
continuous, surjective open map, then f is a quotient map (Remark 1.2.23).

v

Proof.

Let 7 be the topology on X. Then 7 C 7. Let U € 7. Then f~1(U) is
open in Y (from Definition 1.2.22), hence

U=f(ri)er,

since f is open. So T = 7.
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REMARK 1.2.26 If

v=11Iv,

i€l

then each Y; has the quotient topology by the projection map p;: Y — Y;.
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PROPOSITION 1.2.27 If X, Y are topological spaces and f: X — Y is a
continuous, surjective map which sends closed sets into closed sets, then £
is a quotient map.

Proof.

Let 7 be the topology of Y. We have 7 C 7. Let U € 7. Then f~1(U) is
open, hence f=1(U)¢ is closed. Therefore f(f~1(U)¢) = C is T-closed. But

C = U*S, hence 7 = 7.

v
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Intuitively, a quotient map is the nearest thing possible to a
homeomorphism.

EXAMPLE 1.2.28 Let Y = [0,1] and X = S; = 9By (being the boundary
of the unit ball in R?). It is well known that Y and X are not
homeomorphic. Define f: Y — X by f(t) = e?™' (identify R? with the
complex plane). Then f is a homeomorphism on (0, 1) and is continuous
on [0, 1]. It is a quotient map (this will become clear in the next section,
Proposition 1.3.8) . However, it is not an open map (consider the open set

[0,1/2)).

This example describes a sense in which the unit sphere X is constructed
out of the line segment Y = [0, 1]. If we ignore the topology of X, take the
given map f from Y onto X and equip X with the quotient topology, we
obtain the unit sphere. Since f is one-to-one except of (0) = f(1), there
is a sense in which X is constructed out of Y by identifying the end-points
and disturbing the topology as little as possible. Now we formalize this
process.
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Let f: Y — X be surjective and define a relation «~ on Y by setting y -~ y/
if and only if f(y) = f(y’). This is an equivalence relation which partitions
Y into a collection of disjoint subsets, namely the subsets

aqly)={y €Y : ywy'}. Clearly z € q(y) if and only if g(z) = q(y).
The collection of all subsets {q(y) : y € Y} is called the quotient space
of Y by «~ and it is denoted by Y/ «~. The map q: Y — Y/ « is called the
"quotient map". Each point of Y/ « is a subset of Y. Also f is constant
oneachset g(y)={y' €Y : f(y)~ f(y')} and so we may define the
map g: Y/ «~— X by g(q(y)) = f(y) (since q(y) = q(y’) implies

f(y) = f(y’)). So we have the following commutative diagram in Figure 1.1

The function g is onto (since f is) and, which is more important, is
one-to-one. Indeed, if g(u) = g(v), where u,v € Y/ «, we have
u=q(y),v=gq(y'). Then f(y) = g(u) = g(v) = f(y'), hence y -~ y’ and
so q(y) = q(y’), that is u = v. We topologize Y/ «~. Namely we give it
the quotient topology by the quotient map q: Y — Y/ «~. This is called
the "quotient topology generated by the relation" «.
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In the next theorem, we summarize all this discussion and we show that
every quotient topology is up to homeomorphism a quotient topology
generated by an equivalence relation .

THEOREM 1.2.29 If Y is a topological space, X isaset, f: Y — X is
surjective and « is the equivalence relation on Y defined by y -~ y’ and
only if f(y) = f(y’), then Y/ «~ and X are homeomorphic each furnished
with its quotient topology.

Proof.

The homeomorphism is the bijective map g: Y/ «~~— X given above. Since
g oq = f, from Proposition 1.2.24, we have that g is continuous. Similarly
Lo f =g, we see that g~ ! is continuous. [

since g~
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REMARK 1.2.30 Instead of starting with a relation «~, we might assume
that Y is partitioned into a disjoint collection F of subsets. Then an
equivalence relation « is defined by letting y « y’ if and only if y, y’ belong
to the same set member of the collection F. In the case of Example 1.2.28,

F = {{0, 1} and the collection of all singletons other than {0}, {1} }.

By Theorem 1.2.29, Y/ «~ is homeomorphic to the unit sphere in R
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