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Beegexue

[oHsTMe Mepbl, BO3HMKLLIEE MEPBOHAYANLHO B TEOPUN (DYHKLUI
LENCTBNTENBHOMO NEPEMEHHOrO, B HACTOsILLEE BPEMSI UTPaEeT
MEPBOCTEMNEHHYIO POJib B CaMblX pPa3HOODPa3HbIX OTAENaX MaTEMATUKU.
Hapsiny ¢ Teopueii pyHKUNA [eiiCTBMTENLHOMO NEPEMEHHOMO MOHSTMEM
Mepbl, B TOV WAW WHOW POPME, LLIMPOKO MOJb3YIOTCS Teopus
BEPOSITHOCTEN, (DYHKLMOHAJBHBIA aHain3, TOnoaornyeckas anrebpa,
KayecTBeHHasi Teopusi AuddepeHLManbHbIX ypaBHeHNA 1 T. N. Pa3inyHble
OTAEeNbl TEOPETUYECKONA PU3NKYM, UCMOb3YsT METOLLI TEOPUM
BepoSITHOCTEl, (DYHKLMOHANLHOIO aHain3a, 3progmyeckmne TEOPEMbI, TaKXKe
OKa3bIBaAOTCS CBSI3aHHBLIMU B N3BECTHOW CTENEHN C MOHSATUEM Mepbl.
Wctopusi unterpmposatns socxogut k Apxumeny, HetotoHy n JleiibHuuy.
OpHako cTporoe 0boCHOBaHME TEOPVN NHTErPUPOBAHUS CTaNO BO3MOXHO
ToNbKO BO BTOpoii nosioBuHe XIX-ro Beka, bnarogaps Kowu, Qupuxne n
Pumany. KynbMuHauweii atoro nogxoga cranu pabotsi Jlebera,
nosisuswwmnecs B 1902-1903, B KOTOPbLIX OH ONpeAeNin MOHSATNE MEPbI 1
n3mepumoii yHKUMK, HbiHe obwenpuHsaToe. CoBpemMeHHasi Teopusi Mepbi
CTPOWTCS aKCMOMATUYECKN, ONMpasicb Ha H6a3oBble hakTbl Teopum
MHOXECTB, TOMOJIOrMK 1N aHanunsa.
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The theory of measures is an essential ingredient of integration theory and
deals with set functions (called measures), defined on certain collection of
sets which are different from what we experienced in topology. Some
properties of measures require that the collection of sets, on which
measures are defined, are to be closed with respect to countable set
operations. This leads to our first abstract definition.

Onpep,eneHme nonsa nan anre6pb| MHOXXECTB

DEFINITION 2.1.1 Let Q be any set and S be a nonempty family of
subsets of Q. We say that S is a "field” (or "algebra”) of sets, if

(a) D e S;

(b) if {A N, C S, then UN_, Ak € S;

(c)if Ac S, then Q\A= A € S.

)
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REMARK 2.1.2 According to this definition a field is closed under finite
unions and complements. J

From these two facts and De Morgan's law, it follows that a field is also
closed under finite intersections.

Moreover, since () € S, from property (c) we have that Q € S. ]
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EXAMPLE 2.1.3 Let Q = (0, 1] |

and let )

S consist of () and all finite unions of half-open intervals (a, b] contained inJ
Q.

Then S is a field. J

e VIO 1ot W O MR W PO Bt Wi p STek st T.2.1 — "2.1 Mepbl n nsmepums 18 mas 2011 r. 7/ 86




A field is closed under finite set operations. However in many instances in
order to check various properties, we need to perform countable set
operations. This leads to the next definition. With this definition we can
develop a coherent theory of measure and integration.

DEFINITION 2.1.4 Let Q be a set and ¥ a family of subsets of 2. We say
that X is a "o-field” (or a "o-algebra”), if X is a field and it is closed under
countable unions, i.e. if

{Achis1 €, then | JA e
k>1

The sets of X are called "measurable” or "X-measurable”.
If AC Q (not necessarily in ¥), we set

Sa={ANC : Cex}.

Then ¥4 is a field of subsets of A and it is called the "trace o-field on A”
or the "relative o-field on A".
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REMARK 2.1.5 It is easy to see that the intersection of an arbitrary
nonempty family of o-fields of Q is again a o-field. J

So given F a family of subsets, we can speak about the smallest o-field on
Q which contains F (the intersection of all o-fields that contain F). J

This o-field is called the "o-field generated by F" and is denoted by a(.’F).J

This leads to the next definition which is the first link between topology
and measure theory. J
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DEFINITION 2.1.6 If (X, 7) is a topological space,

then

o(7) (being the o-field generated by the topology) is called the "Borel
o-field of X" and is denoted by B(X).

Sets in B(X) are called "Borel sets”.

Evidently B(X) contains all sets of type F, and of type Gs, but it also
contains many other sets.
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Of special interest are the Borel o-fields B(R) and B(RNV).

PROPOSITION 2.1.7 B(R) is generated by anyone of the following familiesJ
of sets:

(a) the family of closed sets; )
(b) the family of all intervals of the form (—o0, bJ; ]
(c) the family of all intervals of the form (a, b]. ]
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In a similar fashion we can describe B(R").

PROPOSITION 2.1.8 B(RN) is generated by anyone of the following
families of sets:

( a) the family of all closed subsets of RV; J

(b) the family of all closed half-spaces of RV of the form
{(x)iey € RY + xic < b}

for some index k and some b € R; and

(c) the family of rectangles of RV of the form

{(Xk)LV=1 Dag < xk < by for k=1,...,N}.
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We want to be able to recognize when a field is actually a o-field. This is
done by the next proposition.

PROPOSITION 2.1.9 If Q is a set and S is a field on Q, then S is a o-field
if one of the following properties holds: J

(a) if {An}n>1 C S is increasing, then >, An € S; or J

(b) if {An}n>1 C S is decreasing, then () 5, As € S. J
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REMARK 2.1.10 Families that satisfy (a) and (b) of Proposition 2.1.9 are
called "monotone classes’. J

Proposition 2.1.9 says that the smallest monotone class and the smallest
o-field over a field coincide.

Moreover, a monotone class which is also a field, is a o-field. J
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N (Ll Orpeaenctme
DEFINITION 2.1.11 Let Q be a set and X a o-field on Q. A set function
p: ¥ — Ry =Ry U{+oco} is said to be a "measure” (or "countably
additive set function” or "o-additive set function”), if (@) = 0 and
whenever {A,},>1 C X are pairwise disjoint sets, then

n(UJ An) = 37 ulAn).

n>1 n>1

If Sis a field on Q and p: S — Ry = R, U {400} is a set-function such
that () = 0 and for every family {Ac}RL; € ¥ of mutually disjoint sets
we have -

N N
w(lJ A =D (A,

n>1 n>1

then we say that u is an "additive” (or "finitely additive”) set function. If
a set and X is a o-field, the pair (2, %) is said to be a "measurable space”.
If 1 is a measure on X, then the triple (2, X, ) is called a "measure
space’. Moreover, if (2) = 1, then the triple (2, X, 1) is called a
"probability space” and p is a "probability measure”.
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Measures are monotonic and countably subadditive.

PROPOSITION 2.1.12 If (2, X, i) is a measure space, then J

(a) if A,B € X and A C B, then u(A) < u(B) and if in addition
p(A) < 0o, we have that pu(B\A) = u(B) — u(A);

(b) if {Ax}k>1 C X, then

p(J A) <D u(Ad)

k>1 k>1

(countable subadditivity).
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For monotone sequences we have easily some limit results.

PROPOSITION 2.1.13 If (2, X, i) is a measurable space and
{An}nZI C Y, then

(a) if Ay C A, C ..., then

Tlim_pu(An) = p(| An)

n>1

(b) if A1 D A2 D ... and for some k > 1, u(Ag) < oo, then

I|m w(An) ﬂ An)

n>1
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We can improve this proposition 2.1.13, if we use the following two set
theoretic limits.

DEFINITION 2.1.14 Let {A,}n>1 be a sequence of subsets of a set €. J

We define

liminf A, = U () An and limsup A, = (1) | An-

m>1n>m m>1n>m

If liminf,_o Ay = limsup,_, . An we say that the sequence {A,}n>1
converges (set-theoretic) to A and denote it by

A= lim A,

n—oo
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REMARK 2.1.15 A moments's reflection on the above definition, reveals
that

liminfA,={weQ : weA, forall n>ng}

n—oo

and

limsupA, ={w e : weA, for infinitely many n > 1}.

n—oo

If the sequence {A,}n>1 is increasing (resp. decreasing) , then

lim A, = U An (resp. nIer;oA,, = ﬂ An).

n—o0
n>1 n>1

Finally, if {An}n>1 C X with X a o-field, it is clear that liminf,_o A, and
limsup,_,., An belong to ¥.
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PROPOSITION 2.1.16 If (2, X, i) is a measure space and {A,}p>1 C X,
then

(a) p(liminf A,) < liminf u(An);
n—oo n—oo

(b) if 1(Up>1 An) < 00, then

pu(limsup Ap) > limsup p(Ap);

n—oo n—oo

(c) if 1(Up>1An) < oo and A=lim,_ Ap, then

u( lim A,) = lim u(Ap).

n—oo n—oo
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The next result is used quite often in analysis and especially in probability
theory and is known as the "Borel-Cantelli lemma”. First we need a concept
from probability theory.

DEFINITION 2.1.17 Let (€2, X, ) be a probability space. J

Let / be an arbitrary index set and let {A;};c; be a family of X-sets (events
in the language of probability theory).

v

We say that the A; are independent, if for all finite collections of distinct
indices {/1,...,in} C I, we have

w(() Ai) = TT m(A)-
k=1 k=1
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REMARK 2.1.18 If the sets (events) {A;}c/ are independent and any set
(event) is replaced by its complement, independence is maintained. J
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PROPOSITION 2.1.19 (a) If (€2, X, ) is a measure space, {Ap},>1 C X
and >, 1 #(An) < oo, then p(limsup, .., As) = 0.

(b) If (2,%, ) is a probability space, {A,}n>1 C T are independent and
anl M(An) = 09 then :u(limsupn—>oo An) =1.
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Now we will develop one of the standard techniques for constructing
measures. This involves the notion of outer measure.

DEFINITION 2.1.20 Let Q be a set and 22 be the family of all subsets of
Q.

A set function p*: 2% — R, = R, U {400} is said to be an "outer
measure”, if it satisfies

(@) w*(9) = O J
(b) if AC B, then p*(A) < p*(B) (monotonicity property); and )

(c) if {An}n>1 C 22 then

M*(U An) < ZN*(AH)

n>1 n>1

(countable subadditivity property).
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KoHcTpynpoBatue mep

Given an outer measure 1* on 2, we will show that there is a o-field ¥«
on Q such that p* restricted to >« is a measure.

DEFINITION 2.1.21 Let u* be an outer measure on a set . J

A set A C Qis"p*-measurable”, if
pr(C) = (CNA)+ p*(C\A) = p*(CNA) +p7(CN A%

for every C € 29

We denote the collection of all ji*-measurable subsets of Q by X -. J

This definition involves an additivity requirement but not any kind of
o-additivity. For this reason the next theorem is rather surprising.
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KoHcTpynpoBatue mep

of all p*-measurable subsets of €,

THEOREM 2.1.22 If Q is a set, /* is an outer measure and ¥« the familyJ

then ¥, is a o-field and = p*|x . is a measure.
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KoHcTpynpoBatue mep Jleberosbl mepbl

Now we will use Theorem 2.1.22 to construct the Lebesgue measure on R
and RV, N > 1.

For R the primitive notion is that of length of an interval, while in

RN, N > 1 the primitive notion is that of volume of an N-dimensional
rectangle.

DEFINITION 2.1.23 Let A C R and let C4 be the collection of all
sequences {/,}n>1 of open intervals such that A C Un21 l,.

The "Lebesgue outer measure” \*: 28 — R, = R, U {400} is defined by

X(A) =inf 9 > || = {In}nz1 S Ca

n>1

where by |/,| we denote the length of /,.
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KoHcTpynpoBatue mep Jleberosbl mepbl

Next we show that \* is indeed an outer measure in the sense of Definition
2.1.21.

PROPOSITION 2.1.24 X\*: 28 — R is an outer measure in the sense of
Definition 2.1.21 and assigns to each interval of R its length.
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KoHcTpynpoBatue mep Jleberosbl mepbl

In a similar fashion we can define the Lebesgue outer measure for
RN, N > 1.

DEFINITION 2.1.25 Let A C RV and let C4 be the collection of all
sequence {R,}n>1 of open N-dimensional rectangles R, = Hzlzl I, with
I« open interval in R such that A C UnZl R,.

The " N-dimensional Lebesgue outer measure”
A5 28 LR, =R, U{+oo} is defined by

An(A) =inf 4> v(Ra) : {Ra}nz1 € Ca

n>1

where by v(R,) we denote the "volume” of R,, i.e.

N
v(Ra) = T lakl-
k=1
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KoHcTpynpoBatue mep Jleberosbl mepbl

The following analog of Proposition 2.1.24 holds.

PROPOSITION 2.1.26 Ay;: oRY _, R, is an outer measure in the sense of
Definition 2.1.26 and it assigns to each N-dimensional rectangle

N
R:HIk, Ik CR
k=1

interval, its volume
N

o(R) = [ Il

k=1
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KoHcTpynpoBatue mep Jleberosbl mepbl

Since A* and A}, are outer measures, because of Theorem 2.1.22, the
following definition makes sense.

DEFINITION 2.1.27 The o-field X« of all A*-measurable sets of R, is
called the "Lebesgue o-field of R" and is denoted by £(RR) or simply L. J

Similarly X - is the "Lebesgue o-field of RN" and is denoted by £(RN) or
simply Ly.

The sets in £ and Ly are called "Lebesgue measurable sets". J

Also A = X*| is called the "Lebesgue measure on R" and Ay = A}z, is
called the " N-dimensional Lebesgue measure”.
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KoHcTpynpoBatue mep Jleberosbl mepbl

PROPOSITION 2.1.28 Every Borel set of RN, N > 1, is Lebesgue
measurable.
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KoHcTpynpoBatue mep KaHTopoBo coBepLueHHOE MHOXECTBO

The next proposition shows that 3« has the property that every subset
with p*-outer measure zero (usually called z*-null set) belongs to ¥+

PROPOSITION 2.1.29 If Q is a set, pu* is an outer measure on 2 and
A C Q satisfies ©*(A) =0, J

then A€ ¥ -. )
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KoHcTpynpoBatue mep KaHTopoBo coBepLueHHOE MHOXECTBO

In general for a measure space (2, X, 1) it is not true that subsets of zero
measure sets (usually called p-null sets) necessarily belong to X. In order to
be able to produce interesting counterexamples and better understand the
measure spaces that have this property, we need to introduce and discuss
the so-called "Cantor-type sets".

EXAMPLE 2.1.30 "Cantor-ternary sets": Let / = [0, 1]. Divide / into three
equal parts and remove the open middle third, that is, the interval

Al = (3, 3) Then divide the remaining closed intervals [0, 3] and [ }
into three equal parts each and remove the open middle third, namely the

intervals Ax; = (32, 32) and Az = (32’ 52)
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KoHcTpynpoBatue mep KaHTopoBo coBepLueHHOE MHOXECTBO

[Mpogonxerne npumepa 2.1.30

Then we divide the remaining four closed intervals into three equal parts
and remove in each case the open middle third, namely the intervals

1 2 7 8 19 20 25 26
As1 = <33733> , Azp = (33733> , Az = <33733> , Az = (33,33> :
We continue this way ad infinitum. At the n*'-step we remove 2" ~1"open

intervals {Ank}i:f with [Aqk| = 3% Then the Cantor ternary set is defined
by

n—

2 1
C=1\ U A, where A, = U Ank.

n>1 k=1
Evidently C is closed and nonempty. )
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KoHcTpynpoBatue mep KaHTopoBo coBepLueHHOE MHOXECTBO

Ewe npogonxerne npumepa 2.1.30

Indeed the endpoints of the various middle thirds were not removed, so
they remain in C and since C is closed so do all the limit points of these

endpoints. For example, if we start from % and take the closest endpoint in
the second step, then this is

In the third step the closest endpoint to % is

1.1, 2\ 8
3 9 271) 27

and so on. We form a sequence which is convergent to
— § : n+1 1
n>1

Thus there are points in C which are not endpoints of removed open
middle thirds.
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70 ewe npumep 2.1.30

Note that the total length of the intervals removed is equal to

2 (5) -

n>1

Hence A(C) =0 (i.e C is Lebesgue-null set) and contains no interval, thus
it is nowhere dense.

Also C is perfect (i.e. every point is a limit point). Indeed, it suffices to
check that every endpoint is a limit point.

But in any neighborhood of any endpoint, there will always be a small
interval that is not removed at some step and this interval will contain an
endpoint belonging to a subsequent step.
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Punan npumepa 2.1.30

Finally it is easy to check that the map which assigns to each sequence
{an}n>1 of 0 and 1 the number

2
> 3nn
n>1

is a bijection of all such sequences onto C.
Since the set of all sequences with 0 and 1 is uncountable, it follows that
the set C has the cardinality of the continuum (i.e. is uncountable).

So recapitulating we have that: )
C is a closed, nowhere dense, perfect set which is uncountable and
Lebesgue-null. The set C is called the "Cantor ternary set”.
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2 s LMeAaLTdBIICHNE Nafl lvpviba LVospdsnmnul v
KoncTpyunposaHune mep mfdkecTBa o o

REMARK 2.1.31 Another way to see the Cantor ternary set is the
following. Every x € [0, 1] has a base 3 (ternary) representation denoted by
X = .3a1a»as3 . ..,where each a,, n > 1, is either 0, 1 or 2.
However a representation of this type is not unique.
For example we have
1
3 = 31000... = 30222...
Consider the first interval removed from [0, 1] in the construction of C,
namely Ay = (%, %) If x € A11 and x = 3ajasas. .., then a; = 1. Each
of the endpoints of A7 has two representations:
1 1 2
— = - =231000...=30222... and = = 31222...= 32000...
3 3 3
No remaining point of [0, 1] can have 1 in the first position of its ternary
representation. So in the first step of the construction of C, we remove all
these points x = 3314233 ..., where a; = 1 and only those points.
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2 s LMeAaLTdBIICHNE Nafl lvpviba LVospdsnmnul v
KoncTpyunposaHune mep mfdkecTBa o o

OkoH4aHune npumepa 2.1.31

Similarly in the second step of the construction of C we remove those
points for which a, = 1 and only those points are removed. At the i
ntM-step of the construction, we remove those points and only those points
for which a, = 1. At the end C must consist of those points which have
ternary representations that contain only the digits 0 and 2, i.e.

C={xe]0,1] : x:.3alaga3...:zz—z with a,=00r2 n>1 }.
n>1

Two properties of C worth mentioning are the following:

(a) the transformation x — 1 — x leaves the C and C°€ invariant; and

( b) given any u € [0, 1] we can find x,y € C such that u =x —y, i.e.
[0,1]=C—-C.
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The next example shows the difference between Lebesgue-null sets and sets
of the first category, i.e. between measure theoretically small sets and
topologically small sets.

We can have a closed, nowhere dense, perfect set (a Cantor-type set) with
relatively large measure.

EXAMPLE 2.1.32 "Cantor-type sets": Choose any sequence of positive
numbers {7y }k>1 such that

...<2k77k<...4772<2771<770:1.

We remove from [0, 1] the open interval h; with center 5 and length

1 — 271, leaving two closed intervals J11 and Jio each with length 7;. Now
from each of the closed intervals J1; and J1» remove open intervals /17 and
2 respectively with length 71 — 212 leaving four closed intervals J1, Jao,
J>3 and Jp4 each of length 7,. We continue this ad infinitum. At the
nth-step, remain 2" closed disjoint intervals, each of length 7,,.
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[Mpogonxerne npumepa 2.1.32

Let
N on 2n71
Co=|JJne and Un= ] lnk:
k=1 k=1
Set .
C=G=0b1n{J
n>1 n>1
Then A(C) = limp—oo 2™,. So if 6 € (0,1) and we choose
On+1
2"y, =
7 n+1

then )\(6) = 0. If 9, = 4, then C = C the Cantor ternary set. Note that

~

since no C, contains an interval of length > 2—1n we infer that C contains
no interval, hence is nowhere dense. Also if x € C, then x € C, for all
n > 1. So there exist k, > 1 such that x € Jp, .
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OkoH4aHune npumepa 2.1.32

Given € > 0 we can find n > 1 such that = < ¢ and so the endpoints of
Jnk, are both in (x — e, x +¢). But these endpomts are in C. Hence x is a
limit point of C and so C is perfect and of course closed.

So we have that C is closed, nowhere dense, perfect and )\(/C\) = 0, where
6 €(0,1).

The set C is said to be a "Cantor-type set”.

Moreover, since in a complete metric space a perfect set has cardinality
bigger or equal to that of the continuum (see for example _
Hewitt-Stromberg (1975), p. 72) we have that the cardinality of C is that
of the continuum, i.e. C is uncountable.

e VIO 1ot T O MR W) PO Bt i g STek st T.2.1 — "2.1 Mepbl n nsmepums 18 mas 2011 r. 43 / 86



KoncTpyunposaHune mep MonHble MmeTpuyeckne npocTpaHcTea

In Proposition 2.1.29 we saw that ¥« contains all x*-null sets and we also
mentioned that this is not the case with general measure space.

EXAMPLE 2.1.33 Consider the measure space (2, X, 1) with Q = [0, 1],

Y = £([0, 1]) = the Lebesgue o-field of [0,1] and A = the Lebesgue
measure on [0, 1]. Let C be the Cantor ternary set (Example 2.1.30). Since
A(C) =0 and C is uncountable, it follows that there are 2¢ Lebesgue-null
sets, where c is the cardinality of the continuum. On the other hand if

Y = B([0, 1]) = the Borel o-field of [0, 1], then because [0, 1] is second
countable, B([0, 1]) has the cardinality of the continuum, i.e.

card B([0, 1]) = c. Therefore there exist Lebesgue-null sets which are not
Borel sets. So (2, B([0,1]), ) is not "complete” according to the next
definition.
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DEFINITION 2.1.34 Let (2, X, 1) be a measure space. J

The measure p is said to be "complete”, if the conditions A € ¥, u(A) =0
and B C A imply that B € ¥. J

Then (Q, X%, ) is said to be a "complete measure space”. J
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REMARK 2.1.35 Properly speaking completeness is a property of the
o-field, but it is common practice to use the term complete for the measure.J

In what follows a set B € Q is said to be u-null (or p-negligible), if there is
A € ¥ such that B C A and p(A) = 0. J

Thus a measure p is complete if and only if every p-null set belongs to X. ]
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It is often convenient to deal with arbitrary subsets of sets of measure zero.
In these cases it is useful to have complete measure space.
Fortunately, every measure space can be "completed”.

PROPOSITION 2.1.36 If (22, X, 1) is a measure space,

N ={Z : there exists N € ¥ such that Z C N and p(N) = 0},
S={AUZ : Ac X, Ze N} and i: £ — Ry is defined by
(AU Z) = u(A), then

(a) £ is a o-field and ¥,V C ¥; )
(b) & is a measure and @y = p; ]
(c) & is complete (z is called the completion of ). ]
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Now we will show that for all N > 1, £y = B(RN) for the Lebesgue
measure Ay (when N =1, £1 = £ and A\; = ).
We will need two auxiliary results.

LEMMA 2.1.37 If A€ Ly, N > 1, J
then Ay(A) = inf{An(U) : Uis open, AC U} =sup{An(K) :
K is compact, K C A}. J
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REMARK 2.1.38 Lemma 2.1.37 implies that the Lebesgue measure Ay is
"regular” (see Definition 2.5.7). }

However, we delay the definition and discussion of regularity until Section
2.5, when we will discuss measure theory in conjunction with topology.
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LEMMA 2.1.39 If A€ Ly (N > 1), |
then there exist By, B, € B(]RN) such that B CAC B, J
and )\N(Bz\Bl) =0. J
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Using Lemmata 2.1.37 and 2.1.39, we can prove the following proposition
(as before £1 = L and A\; = A).

PROPOSITION 2.1.40 The Lebesgue measure Ay on (RV, Ly) is the
completion of the Lebesgue measure E\N on (RN, B(RN)).
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In the proofs of the two lemmata and of Proposition 2.1.40, crucial was the
fact that RN can be expressed as the union of a sequence of Lebesgue
measurable sets of finite Lebesgue measure. We formalize this in the next
definition.

DEFINITION 2.1.41 Let p be a measure on a measurable space (2, X).
Then p is "finite”, if ©(Q) < 400 and it is "o-finite”, if
Q=p>1 22 € X and p(Q2y) < o0 forall n> 1.

More generally, a set A € X is o-finite under , if A=J,>; As with
An € X and p(Ap) < +oo for all n > 1.

The measure space (Q, X, 1) is said to be "finite” (respectively, "o-finite"),
if p is finite (respectively, o-finite).
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In general for a given set-function additivity is easily established, but
o-additivity is more difficult to prove.
So we need conditions which will pass us from additivity to o-additivity.

PROPOSITION 2.1.42 If F is a field and pu: F — R* =R U {£o0} is an
additive set function, then

(a) if p is continuous from below at each A € F, i.e. if {As}p>1 C Fis
increasing and U,>1A, = A, we have u(A,) — p(A), then it follows that x4
is o-additive;

.

(b) p is R-valued and continuous from above at the empty set, i.e. if
{An}n>1 C F is decreasing and Np>1A, = (), we have u(A,) — 0, then it
follows that p is o-additive.
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With the next theorem we show that any o-finite measure on a field F has
a unique extension to the minimal o-field ¥ = o(F). For a proof of this
fundamental extension theorem (known as "Caratheodory Extension
Theorem”), we refer to Dudley (1989), p. 66 or Royden (1968), p. 257.

THEOREM 2.1.43 If 11 is a measure on the field F of subsets of 2 and p is
o-finite on F (i.e. Q = Up>1Q, with Q, € ¥ and p(Q2,) < 400 for all
n>1),

then 4 has a unique extension to a measure on o(F). |
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REMARK 2.1.44 An arbitrary measure p on F still has an extension on
o(F) but this extension is not necessarily unique. J
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Concerning the relation of the values of a o-finite measure p on a field F
and on the minimal o-field o(F) generated by F, we have the following
result.

PROPOSITION 2.1.45 If (Q, %, i) is a measure space, F is a field of
subsets of Q such hat ¥ = o(F), w is o-finite on F (i.e. Q = Up>1Q)
with Q, € ¥ and p(Q2,) < o0 for all n > 1) and € > 0,

then given any A € ¥ with p(A) < 400 we can find B € F such that
WAL B)<e.
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Before passing to measurable sets let us mention a few things about the
existence of nonmeasurable sets on R.
We have the following result:

PROPOSITION 2.1.46 If we assume the axiom of choice (which is actually
part of the axiomatics in this book), J

then there exists a set A € R which is not Lebesgue measurable (in fact we
can find A C [0, 1] such that A*(A) = A*(/\A) = 1). J
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REMARK 2.1.47 A construction of A goes as follows. Let
-1 1
I =—,=].

For x,y € | write x ~ y if and only if x — y € Q. We can show that ~ is
an equivalence relation.

We can decompose / into the equivalence classes of ~. J

Let A be the set containing exactly one member of each equivalence class
(here we use the axiom of choice).

Then it can be shown that A is nonmeasurable (for details we refer to
Royden (1968), p. 63-64). J
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Now we turn our attention to measurable functions. We define
measurability in the following two contents.

DEFINITION 2.1.48 (a) If (€21,%1) and (2, X2) are measurable spaces, a
function f: Q; — Qy is said to be "measurable” (or
"(X1, X2)-measurable”),

if for all A€ ¥, F71(A) € 1. J

(b) If (2,X) is a measurable space and Y is a topological space, then
f: Q — Y is "measurable”, if it is (X, B(Y'))-measurable in the sense of
part (a) (B(Y) is the Borel o-field of ).
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REMARK 2.1.49 If in case (b) of Definition 2.1.48, Q = X, X is a
topological space and f: X — Y, we say that f is "(Borel) measurable”, if
it is (B(X),B(Y))-measurable.

If X =RN we say that f is "Lebesgue measurable”, if it is
(L, B(Y))-measurable. Notice that in all cases, when the range space is
topological, we use the Borel o-field.

The reason is that the Lebesgue o-field on the range space may be too
large.

Indeed, there exists a continuous nondecreasing function f: [0,1] — [0, 1]
and a Lebesgue measurable set A C [0,1] such that f~1(A) is not
Lebesgue measurable (assuming the axiom of choice).

Finally notice that the definition of measurable function depends in no way
upon any measure, but only upon a particular o-field.
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PROPOSITION 2.1.50 If X, Y are sets, f: X — Y and F is a nonempty
family of subsets of Y, J

then o(f~1(F)) = fY(o(F)) (here f1(F) = {f1(A) : AcF}). ]
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A useful consequence of this proposition 2.1.50 is the following result.

COROLLARY 2.1.51 If (X,Xx) and (Y, Xy) are measurable spaces,
f: X — Y and F is a family of subsets of Y such that o(F) = Xy, J

then f is (Xx, Xy )-measurable if and only if f1(A € Xx forall Ac F. J
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COROLLARY 2.1.52 If X and Y are topological spaces and ¢ is a
homeomorphism of X into Y, J
then o(B(X)) = B(¢(X)). J
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When the range space is R, then we can use Corollary 2.1.51 together with
Proposition 2.1.7 to give the following characterization of measurable
R-valued functions.

COROLLARY 2.1.53 If (©2,X) is a measurable space and f: Q — R, ]
then the following conditions are equivalent ]
(a) f is measurable; ]
(b) forall e R, {w e Q : f(w) >0} ek )
(c)forall 0 eR, {weQ : fw)<0} ek, ]
(d)forall 0 e R, {weQ : f(w) <O} ek )
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We shall also need the concept of measurablity for extended real functions.
We do this by making the conventions that the singletons {+oc0} and
{—o0} of the extended real line R* are Borel sets.

Then the next proposition becomes clear.

PROPOSITION 2.1.54 If (Q2,X) is a measurable space and
f:Q—-R*=RU{£o0}, J

then f is measurable if and only if f~1({4+o00}), f~}({—00}) € £ and
f~1(B) € X for every B € B(R).
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PROPOSITION 2.1.55 If (€2, X) is a measurable space,
f:Q—R*=RU{xoo} and D C R is dense subset, then the following
conditions are equivalent

(a) f is measurable; J

(b) for all 0 € D, F~1((6, +o0]) € Z;

(c) for all @ € D, F~1([0, +c0]) € Z;

J
J
(d) forall 6 € D, f~1([~0,0)) € X; J
)

(e) forall @ € D, F1([~o0,0]) € .
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COROLLARY 2.1.56 If X is a topological space and X is a o-field on X
such hat B(X) C ¥, J

then all R-valued continuous and all R*-valued lower (upper)
semicontinuous functions defined on X are ¥-measurable.

e VIO 1ot W O MR W) PO Bt Whp STek st T.2.1 — "2.1 Mepbl n nsmepums 18 mas 2011 r. 67 / 86



N3mepumbie dyHKunn N3amepumocTb "paclumpertbix’ dyHKunii

PROPOSITION 2.1.57 If (22, X) is a measurable space, f: Q — R* is
Y -measurable and g: R* — R* is a function such that for all € R,
g7 1([0, +oc]) N R is a Borel set,

then gof: Q — R* is X-measurable. J
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REMARK 2.1.58 Note that the composition of two Lebesgue measurable

functions need not be Lebesgue measurable.

We will outline an example illustrating this. For every x € [0,1], let
{an}n>1 denote its ternary expansion (i.e.

dp
X = E 52.33132...8,,...

with a, = 0,1 and 2).

Let n(x) be the first index for which a, = 1. If there is no such n, i.e. if
x € C, C being the Cantor set (Example 2.1.30), then set n(x) = 4o00. Let

n(x) o 1
glx) = Z SkHL T 5n(a)”
k=1

Then g is nondecreasing, continuous and onto / = [0, 1]. It is called the

" . "
Cantor function”.
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OkoH4yaHune 3ameyanunsa 2.1.58

Set

() = 2(8(x) + ).

Then f is continuous and strictly increasing from / onto itself. If C is the
Cantor ternary set, then g~1(C) is Lebesgue measure and has positive
Lebesgue measure. Also there exists A C | Lebesgue measurable such that
f~1(A) is not Lebesgue measurable (so f is the function mentioned in

Remark 2.1.49).Let
(x) 1, ifxeM
X) =
xn 0, ifx¢M

and set h = xyaof. Then x4 and f are Lebesgue measurable, but h is not.
Finally note that the above construction also shows that there exist
non-Borelian Lebesgue measurable sets. The set A above is such a set
(compare with Example 2.1.33).
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The proof of the next proposition is straight forward and we leave it to the
reader.

PROPOSITION 2.1.59 (a) If (2,X) is a measurable space and
f,g: Q — R are -measurable functions, then so are the functions

AF(X € R), f + g, max{f, g}, min{f, g}, fg,|f.

(b) If (2,X) is a measurable space and f,: @ — R*, n>1, are
Y -measurable, then

liminf f,, limsupf,, inff,, supf,
=9 n—0o0 n>1 n>1

are all X-measurable and R*-valued functions.
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REMARK 2.1.60 Proposition 2.1.59(a) is actually valid also for R*-valued
functions provided we take care that the quantities involved are well
defined. )

Also from Proposition 2.1.59(b) it follows that the pointwise limit of
Y -measurable R*-valued functions is >-measurable.

In fact we can generalize this as follows. )
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PROPOSITION 2.1.61 If (Q2,X) is a measurable space, (Y, d) is a metric
space and f,: Q — Y are Y-measurable functions such hat for all

weQ f(w) — flw)inY,

then f is X-measurable too. J

73 / 86
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REMARK 2.1.62 The result fails if Y is nonmetrizable. )

In fact, if / = [0, 1], there is a sequence of continuous functions f,: | — /'
such that f,(x) — f(x) for all x € I and f is not even Lebesgue
measurable.
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The following easy fact is very useful in many situations.

PROPOSITION 2.1.63 If (Q1,%1) and (2, X2) are measurable spaces,
{An}n>1 C X1 are mutually disjoint sets with

UA,,:Ql

n>1

and f,: A, — Q5 are (X4, Xp)-measurable (see Definition 2.1.4),

then f: Q1 — Qj defined by f(w) = fp(w) if w € Ay is
(X1, X2)-measurable.
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In contrast to continuous functions, a measurable function f defined on a
measurable set A C Q with values in R, can be extended trivially to a
measurable function f on Q by letting f have, for example, some fixed
value on Q\A. What is rather surprising is that this extension is also
possible, even if A is not measurable. To do this we need some preparation.

DEFINITION 2.1.64 Let (£2,X) be a measurable space. A function
s: Q — R which assumes only a finite number of values {r,}7_;

is said to be a "simple function”, if Ay = s~1({rc}) € = for every
k € {1,...,n}. In this case

n

s=_rnxa,

k=1

is called the "standard representation” of s.
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The next proposition tells us that on a measurable space the measurable
functions are precisely the pointwise limits of sequences of simple functions.

PROPOSITION 2.1.65 If (€2, X) is a measurable space, )

then f: Q — R* = R U {£o00} is X-measurable if and only if there exists a
sequence {sp},>1 of simple functions such that |s,(w)| < |f(w)] for all
we Qandall n>1 and s,(w) — f(w) for all w € Q.
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REMARK 2.1.66 A careful reading of the above proof reveals that if f is
bounded, J

then s, — f uniformly on Q. ]
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THEOREM 2.1.67 If (2, X) is a measurable space, A C Q (not necessarily
in X)and f: A— R is X s-measurable, J

then there exists f: Q — R a ¥-measurable function such that ?|A = i J
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In fact the result remains valid if R is replaced by a Polish space Y. We will
only state the relevant proposition and for a proof we refer to Dudley
(1989), p. 97 or Kuratowski (1966), p. 434. In this context by a simple
function we understand a function s: Q — Y such that s has finite range
and for every y € Y, s71({y}) € =.

THEOREM 2.1.68 If (2, X) is a measurable space, Y is a separable metric
space, A C Q nonempty (not necessarily in ) and f: A — Y is
Y a-measurable,

then
(a) there are X 4-simple functions {s,}n>1 such that s,(w) — f(w) for all
weQ;

(b) if Y is complete (i.e. Y is Polish), then f admits a 5 -measurable
extension f: Q — Y.

Mpumeyanue: B n. (b) namepumocts npogosxeHHOR yHKUNM CregyeT
MOHNMaTb OTHOCUTENBHO UCXOAHON X-anrebpsl (cM. fok. Teopembl 2.1.67).
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In the next theorem, pointwise convergence of measurable functions is
shown to be uniform except on small sets.
The result is known "Egorov’s theorem”

THEOREM 2.1.69 If (2, X ) is a finite measure space, (Y, d) a metric
space, fn, f: Q — Y are ¥-measurable functions and f,(w) — f(w) p-a.e.
on §,

then for any € > 0 we can find A € X with p(A€) < e such that f, — f
uniformly on A, i.e.

nIi_)ngosup[d(fn(w), flw)) : we A]=0.
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DEFINITION 2.1.70 Let (€2, X ) be a measure space. ]

A set A€ X is called an "atom” of p(A) >0 and if C € X, C C A, then
either (C) = p(A) or u(C) =0. J

If v has no atoms, then p is said to be "nonatomic”. ]
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EXAMPLE 2.1.71 Let Q be aset, ¥ =2% and pu: ¥ — R, =R, U {+o0}
is defined by
card A, if Ais finite
w(A) = P
+00, if A is infinite

Then p is called "counting measure” and for this measure every singleton is
an atom.

v

The Lebesgue measure Ay on RV (N > 1) is nonatomic. J
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The next theorem shows that a finite positive measure space can have at
most a countable family of disjoint atoms.
For a proof we refer to Dunford-Schwartz (1958), p. 308.

THEOREM 2.1.72 If (2,X) is a finite measure space and € > 0, ]
then .
Q=[] A
k=1

for some n € N, {A(}]_; C ¥ are mutually disjoint and each Ay is either
an atom or p(Ax) < e.
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The next theorem is known as "Lyapunov's theorem” and has important
implications in control theory.

An elementary proof of this result can be found in Halmos (1948), while a
more sophisticated proof based on the Krein-Milman theorem (see
Theorem 3.5.23) was given by Lindenstrauss (1966).

The infinite dimensional version of this theorem can be found in Theorem
3.10.37.

THEOREM 2.1.73 If (€2, X) is a measurable space and px: ¥ — R,
k=1,...,n, are finite nonatomic measures,

then the set
R={(m(A)j_, : AT}

is compact and convex in R”".

e VIO 1ot W O MR W) PO Bt Wi g STek st T.2.1 — "2.1 Mepbl n nsmepums 18 mas 2011 r. 85 / 86



N3mepumbie dyHKunn

An interesting consequence of Lyapunov’s theorem is the next result .
One interpretation of this theorem is that it is always possible to cut a
"nonatomic” cake fairly.

THEOREM 2.1.74 If (2, X) is a measurable space, px: Q2 — R,

k =1,...,n, are nonatomic probability measures and {0,,}N_, C R, with
N
> -1,
m=1

then there exists a partition {A,}N_; of Q such that jux(Am) = 6, for all
k=1,...,nandall m=1,... N.
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