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Beegexue

In this section we develop a theory of integration based on our studies of
measure spaces and measurable functions. First we define the integral of an
arbitrary nonnegative measurable function defined on a measure space. The
function need not be bounded and the space need not have finite measure.
Then we extend the definition to functions that need not be nonnegative.
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We start with the definition of an integral of a nonnegative simple function.

DEFINITION 2.2.1 Let (2, X, 1) be a measure space and s: Q — R a
simple function,

S(u)):ZrkxAk(w), >0, AkeX, k=1,...,n.
k=1

Then we define .

[ st@)dn) = - rntAv).

If for some k =1,...,n, r, =0 and pu(Ax) = 400, we set rpu(Ax) =0

(according to the usual arithmetic on R).
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REMARK 2.2.2 This is a well defined notion, namely it is independent of
the particular representation of the simple function. So suppose

m
S(w):ZaIXBi(QJ), Bi EZ l: ].,...,I'I‘I7
i=1

is another representation of s. Note that

n m
s(w) = Z Z CkiXANBi»

k=1 i=1
where ¢,; = r = a;. Therefore we have

n

Z Z ckip(Ak N Bj) = Z rk ZM(Ak NBj) =

k=1 i=1 k=1 i=1

= Z rep(Ag) = Z aip(B)
k=1 i=1

(by a symmetric argument). So indeed Definition 2.2.1 is independent of
the particular representation of the simple function.
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The following proposition is a straightforward consequence of Definition
2.2.1

PROPOSITION 2.2.3 If (2, X, 11) is a measure space, s and h are
nonnegative simple functions on Q and ¢ > 0, then

(a) if s(w) = h(w) p-a.e. on Q, then [sdu = [ hdy;
Q Q

(b) [esdp=c [sdu;
Q Q

(c) J(s+hdu= [sdu+ [ hdy;
Q Q Q

(d) if s(w) < h(w) p-a.e., then [sdu < [ hdpu.
Q Q
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Now we can define the integral of a X-measurable function
f: Q—>R+:R+U{+OO}

DEFINITION 2.2.4 Let (2, X, 1) be a measure space and
f: Q— R, =R, U{+oo} be a ¥-measurable function. The "integral” of
f with respect to p is defined by

/f(w)d,u(w) = sup /s(w)d,u(w) : sissimple, 0<s<f
Q Q

We say that f is "integrable” if [ fd u < +oo0.
Q

Finally if A € ¥, we can define the integral of f over A by
/fd,u:/fx,qdy.
A Q
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Teopembl cxogumMocTu MoHoToHHas cxoaumocTb

REMARK 2.2.5 According to Definition 2.2.4 the integral of a nonnegative
Y -measurable function always exists; it may be +oo. It is easy to check
that properties (a), (b) and (d) of Proposition 2.2.3 still hold. Property (c)
also holds, but we need a convergence theorem, which is known as
"Monotone Convergence Theorem”.

THEOREM 2.2.6 (Monotone Convergence Theorem) If (,%, 1) is a
measure space and f,: Q — R is an increasing sequence of ¥-measurable

functions with
f= lim f,,

n—oo

/fnd,uT/fd,u.
Q Q

then
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Combining Proposition 2.1.65 with Theorem 2.2.6, we obtain a useful
corollary, which in the context of Banach space valued function is the
starting point of Bochner integration (see Section 3.9).

COROLLARY 2.2.7 If (Q,%, ;1) is a measure space and f,: @ — R, isa
Y -measurable function, then we can find simple functions {s,},>1 such

that s,(w) 7 f(w) p-a.e. and
sndp T | fdu.
/ Q/

Q
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Now we can prove the additivity property of the integral together with two
more useful properties.

PROPOSITION 2.2.8 Let (2, X, 1) be a measure space.
(a) If f,g: Q — R are Y-measurable functions, then

/(f+g)dM=/fdu+/gdu;
Q Q Q

(b)If f,: Q — R, are Y-measurable functions, then
/ S hdu | =D / fod pu;
Q n>1 n>1 Q

(c) If f: Q — R, are X-measurable functions, then m(A) = f fdu, Ae X

iS @ measure on 2.

v
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Now we will complete the definition of the integral by defining the integral
of a X-measurable, R* = R U {%00}-valued function.

DEFINITION 2.2.9 Let (€2, X) be a measurable space and f: Q — R* is a
Y -measurable function. We set f+ = max{f,0} and f~ = max{—f,0}.
These are the "positive” and "negative” parts of the function f and they are
both Y-measurable, nonnegative functions.

Note that f = f* — f~ and |f| = fT + .

Using f* and f~ we can define the integral of f.
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DEFINITION 2.2.10 Let (€2, X, i) be a measure space and f: Q — R* be a
Y -measurable function.

v

We say that f is "integrable”, if both f* and f~ are integrable (Definition
2.2.4). In that case we define

/fd,u:/erd,u—/fd,u.
Q Q Q

We denote the class of u-integrable functions on Q by £1(, i) or simply
by £1(€2) when no confusion is possible.
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REMARKS 2.2.11 Note that |f| € £1(Q) whenever f € £1(9Q).
Observe that the quantity

/fd,u:/erd,u—/fd,u.
Q Q Q

makes sense even if one (but not both) of the quantities

/f+du, /fd,u.

Q Q

is infinite. Some authors use the term "quasi—integrable” for such functions.

v
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In the next proposition we list some elementary properties of integrable
functions. Their proofs are straightforward and are left to the reader.

PROPOSITION 2.2.12 Let (2, X, 1) is a measure space, ¢ € R and
f,g € L1(Q), then
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A statement about w € Q will be said to hold "u-almost everywhere”
(u-a.e. for short) if and only if it holds for all w ¢ A for some A € ¥ with
pu(A) = 0.

PROPOSITION 2.2.13 If (Q, %, 1) is a measure space and f,g: Q — R*
are two X-measurable functions such that f(w) = g(w) p-a.e. on Q, then

/fd,u

Q
is defined if and only if
/ gdp
Q
is defined and
/fd,u: /gdu.
Q Q

e STV IO 1ot T O MR W PO Bt h g STek s T.2.2 — "2.2 VinTerpuposaHue n 18 mas 2011 r. 15 / 54



Teopembl cxogumMocTu CBolicTBa UHTErpupyemMbix hyHKLNIA

REMARK 2.2.14 According to this proposition, p-null sets play no role in
the theory of integration with respect to .

Thus in theorems about integrals, even for sequences of functions, the
hypotheses need only hold almost everywhere.

So in Proposition 2.2.12(c), it suffices to assume that f(w) < g(w) p-a.e.
on .
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PROPOSITION 2.2.15 If (22, X, i) is a measure space and f: Q — R* is
Y -measurable, then

(a) if f € £LY(Q), then f(w) €R p— a.e. on Q;

(b) if f >0 pu—a.e. on and /fd,u,zOthen f=0p—ae. onQ.
Q

v
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We can now state the extended version of the Monotone Convergence
Theorem (Theorem 2.2.6).

THEOREM 2.2.16 (Extended Monotone Convergence Theorem)
If (Q,%, 1) is a measure space and f,,f: Q — R* are X-measurable
functions such that f, T f u-a.e. on Q, g < f, p-a.e. on Q and

—oo</gd,u

Q

or alternatively f, | f p-a.e.on Q, f, < -a.e.on 2 and
y 2 g

/ng < +00),
Q
then
/f,,d,uT/fdu (respectively /fndul/fdu).
Q Q Q Q
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Using Theorem 2.2.16 we can prove a convergence result that is basic to all
of the limit properties of integrals. The result is known as "Fatou’s lemma”.

THEOREM 2.2.17 (Fatou's Lemma) If (€2, X, 1) is a measure space and
fn,g: Q — R* are X-measurable functions, then
(a) if g < f, prae. on Q and —oco < [ gdp, we have

Q

/Iiminf fadp < Iiminf/fnd,u;

n—oo n—oo

Q Q
(b) if f, < g p-a.e. on Q and [ gdu < +o0, we have
Q

Iimsup/fndu< /Iimsup fodp

n—oo n—oo

Q Q
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EXAMPLE 2.2.18 The inequality in Fatou's lemma can be strict. Let

Q =R, X = L (the Lebesgue a o-field) and A = 1 (the Lebesgue

measure). Let f, = X[pn+1]. Then fp(w) — 0 for allw € Q, but [ frdu =1
Q

for all n > 1. Hence 0 = [ limp_oo fpdp < 1 = limp_oo [ fodp.
Q Q
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The next theorem is the main reason that the Lebesgue integral introduced
in this section is more powerful than the well-known from calculus Riemann
integral . The result is known as the "Lebesgue Dominated Convergence
Theorem”.

THEOREM 2.2.19 (Lebesgue Dominated Convergence Theorem)

If (,%, 1) is a measure space and f,: Q2 — R* is the sequence of

Y -measurable functions, f(w) — f(w) p-a.e. on Q and f,(w) < h(w)
p-a.e. on Q with h € £1(Q) and

)
/fdﬂ— lim /f,,d,u.
Q

EXAMPLE 2.2.20 Without the function h € £1(2) controlling the growth
of the sequence {f,},>1, Theorem 2.2.19 fails. Indeed, let Q =R, X =L
(the Lebesgue a o-field) and A\ = p (the Lebesgue measure). Let

fn = X[n2n)- Then f(w) — 0 for all w € Q, but

f fnd:u = fX[n,Zn]d)\ =n-»0.
Q R
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COROLLARY 2.2.21 If (2, %, i) is a measure space, f,: Q — R* is the
sequence of ¥-measurable functions, f,(w) — f(w) p-a.e. on Q and
fo(w) < h(w) p-a.e. on Q with AP € L£1(Q) (p > 0), then |f|P € £1(R) and

/ £, — fPdp — 0.
Q
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Next we will present some generalizations of Fatou's lemma (Theorem
2.2.17) and of the Lebesgue Dominated Convergence Theorem (Theorem
2.2.19). For this purpose we need to introduce a new type of convergence,
in general different from the p-almost everywhere convergence.

DEFINITION 2.2.22 Let (€2, X, 1) be a measure space. A sequence f, of
p-a.e. R-valued, ¥-measurable functions "convergence in measure” (or in
p-measure if we want to emphasize the dependence on the measure p) to a
Y -measurable function f if, for every € > 0,

lim p({w €Q : [fyw) — Fw) > e}) =0.

When i is a probability measure, then the convergence in u-measure is
called "convergence in probability”.

We shall say that the sequence {f,},>1 is "Cauchy (fundamental) in
measure” if for every € > 0
lim p({weQ : |f(w)— fm(w)| >€}) =0.
n,m— oo
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REMARK 2.2.23 In Section 5 we will extend this mode of convergence to
functions with values in a separable metric space (Definition 2.5.47) . Using
Definition 2.2.22 we can readily verify that

(a) f, 2 f and £, X5 g, then f = g prae; J

(b) if £y £, f and gn Lg, then for all £ € R, &F, + gn Lgf—i—g; J

(c) if f, 25 £, then £ 25 £+ £~ 25 = and |f,| 2 |F]. J
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EXAMPLE 2.2.24 In general p-almost everywhere convergence and
convergence in pu-measure are distinct notions.

Let Q@ =R,% = L and = A and consider f;, = X[n nt1]-
Then f,(w) — 0 for all w € Q.
On the other hand A({w € Q2 : f(w) > 1}) =1 -» 0.

Also let Q = [0, 1], £ = £([0, 1]) (the Lebesgue o-field of [0,1]) and = A
(the Lebesgue measure on [0, 1]).
Let gon = xr—1 » for r =1,..., n and consider the sequence

n ’n
811, 812, 822, 813, 823,833, - - , 81n,82n,83n;- - -, 8nn; - - -

We have that the sequence converges in measure to 0 but it does not
converge p-almost everywhere.

The situation changes if we are in a finite measure space.

CmoTpuTe cnegytowuii cnaiig. J
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PROPOSITION 2.2.25 If (2, X, i) is a finite measure space, then p-almost
everywhere convergence implies convergence in p-measure. J
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Although p-almost everywhere convergence and convergence in p-measure
are in general distinct modes of convergence (Example 2.2.24) , we can
always extract from any convergent in measure sequence an almost
everywhere convergent subsequence.

PROPOSITION 2.2.26 If (22, X, i) is any measure space and {f,}n>1 a
sequence which convergence in u-measure, then it has a subsequence which
converges p-almost everywhere to the same limit.

A.cb.-Mm.H., npocp. FO. 3. Jlunke (MncTutY IR B R BV T (T I -E T o] 18 mas 2011 r. 27 / 54



o VUL VIC TEUPENDL JICUEld U MdMupnpysmon
Teopembl cxogumocTu [(SGhTIVIIe 7] o e

Using Proposition 2.2.26 we can have the first extension of the Lebesgue
Dominated Convergence Theorem (Theorem 2.2.19).

THEOREM 2.2.27 (Extended Lebesgue Dominated Convergence Theorem)
If (Q2,X,n) is a measure space,

f,: Q — R* is the sequence of ¥-measurable functions,

fo —— f and

|fo(w)| < h(w) p-a.e. on Q with h € £1(Q),

then
fe k)
and
/fdu: lim /fndu.
Q Q
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When the measure space is finite, we can extend further Theorem 2.2.27 by
using the concept of uniform integrability which is important in probability
theory (convergence of martingales) and in integration theory in general.

DEFINITION 2.2.28 Let (2, X, 1) be a finite measure space and

K C £YQ).

We say that K is a "uniformly integrable” set

if

lim sup / |fldp = 0.
€—+00 fek

{Iflzc}
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REMARK 2.2.29 It follows immediately that if for every f € K we have
f(w) < h(w) p-a.e. on Q with h € £1(Q), then K is uniformly integrable.

v

A uniformly integrable set K is £1(Q)-bounded, i.e. we have

sup/|f]d,u,< 0.
K
Q

To see this note that given € > 0, we can find ¢ > 0 large enough such
that for all ¥ € K we have

[iftau="[ idu+ [ if1du<ercu.
Q

{Ifl=c} {Ifl<e}
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The next proposition gives an equivalent definition of uniform integrability
which we encounter often in textbooks.

PROPOSITION 2.2.30 If (22, X, i) is a finite measure space and
K C £Y(Q), then K is uniformly integrable if and only if the following two
conditions hold:

(a) K is L}(Q)-bounded, i.e.

sup/ |f| dp < oo;
K JQ

(b) given € > 0 we can find § > 0 such that if A € X with p(A) <4, then

sup/ |fldp < e.
K JA

REMARK 2.2.31 It can be proved that in Proposition 2.2.30, property (a)
is a consequence of (b) if the measure y is nonatomic.

.
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Another characterization of uniformly integrable sets in £1() is given in
the next proposition, known as the "de la Vallée-Poussin Theorem”. The
most useful part of this result is the implication (b) = (a). For a proof of
the proposition we refer to Dellacherie-Meyer ( 1978) , p. 24-11 or Doob
(1995), p. 95.

PROPOSITION 2.2.32 If (22, %, i) is a finite measure space and
K C £1(Q), then the following properties are equivalent: J
(a) K is uniformly integrable; J

(b) there exists a positive function ¢ defined on R such that

lim 2 = o6 and sup/go(|f|) dp < oo.
t——+oo fek
Q
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A basic application of uniform integrability is the following extension of
Fatou's lemma and of the Lebesgue Dominated Convergence Theorem.

THEOREM 2.2.33 (Extended Fatou's Lemma)
If (Q,%, 1) is a finite measure space and {f,},>1 C £}(Q) is a uniformly
integrable sequence, then

/Iim inf fydp < lim inf/ fodu <

n—oo n—

Q Q

< Iimsup/fndug /Iimsup fndpu.

n—o00 n—o00
Q
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THEOREM 2.2.34 (Extended Lebesgue Dominated Convergence Theorem
I

If (Q, %, i) is a finite measure space and {f,},>1 C £1(Q) is a uniformly
integrable sequence such that f, -~ f as n — oo, then

/|fn—f|du—>0
Q
as n — oo.
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In a similar fashion we can also prove the following generalization of
Theorem 2.2.34.

THEOREM 2.2.35 If (2, X, 1) is a finite measure space, 0 < p < oo,
f, = f and {|f,|P},>1 is uniformly integrable, then

/|fn—f|pdu—>0
Q

as n — oQ.

REMARK 2.2.36 If p = 1, then we recover Theorem 2.2.34. J

e STV IO 1ot T O MR W PO Bt h g ek s T.2.2 — "2.2 VinTerpuposatue n 18 mas 2011 r. 35 / 54



Teopembl cxogumMocTu MpocTpaHcTea Jlebera

Now we generalize the linear space £1(Q2) as follows:

DEFINITION 2.2.37 Let (€2, X, 1) be any measure space and 0 < p < 0.
By LP(Q2) (or LP(L, 1) we denote the set of all X-measurable functions

f: Q — R* such that
/ |f]P du < o0
Q

(ie. |FIP € £1(Q)).

If 1 < p < oo the quantity

1/p
1l = ( / Ifl”du>
Q

is called the "LP-norm” or "p-norm” of f (in fact it is a seminorm).

REMARK 2.2.38 If f, g € £P(Q) and we set d,(f,g) = ||f — gl|p, then

dy(-,-) is a semimetric on LP(2). We have a metric space as follows.
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DEFINITION 2.2.39 Let (€2, X, 1) be any measure space and 0 < p < c©.
On LP(€2) we consider the equivalence relation ~ defined by f ~ g if and
only if f = g p-a.e. Let

REMARK 2.2.40 On LP(Q2) dp(-,-) is a metric. In fact as it is well known
(LP(2), dp) is a complete metric space

(i.e. LP(2) with the "p-norm” || - ||, is a Banach space, see Definition
3.1.10(f)).

LP(@) = £7(Q)/ ~ )
J
J
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The next proposition is a byproduct of the proof of the completeness of
(LP(Q2), dp) and its proof can be found in Kufner-John-Futik (1977) , p. 74.

PROPOSITION 2.2.41 If (2, X, i) is any measure space,

{fn, f}n>1 C LP(Q) (1 < p < 0) and ||f, — ||, — 0, then we can extract
a subsequence {f,, }x>1 of {fs}n>1 such that £, (w) — f(w) p-a.e. on Q
and for all k > 1 |f,, (w)| < h(w) p-a.e. on Q with h € LP(Q).

There are two basic inequalities involving the p-norm. These are Holder's
inequality and Minkowski's inequality.

Before proving them, we establish a lemma, which can be viewed as a
generalization of the classical inequality between the arithmetic and the
geometric means.

LEMMA 2.2.42 If x, y are nonnegative real numbers and 0 < A < 1, then
XAy <A+ (1= Ny

with equality only if x = y.
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We can allow also p = oo, provided we define the corresponding norm
differently, namely in a pointwise fashion.

DEFINITION 2.2.43 Let (2, X, i) be a measure space and f: Q — R* be a
Y -measurable function.

v

The "essential supremum” of f is defined by
esssupf =inf{c e R* : p({weQ : f(w) > c}) =0},

i.e. ess sup is the smallest number ¢ such that f(w) < ¢ p-a.e. on Q.

The space £°(Q) is the collection of all X-measurable functions
f: Q — R* such that ess sup |f| < cc.
The quantity ||f||ec = ess sup |f]| is called the "L* norm" of f .
As before

19(Q) = £(Q)/ ~

(see Definition 2.2.39).
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THEOREM 2.2.44 (Hélder Inequality)
If (Q,%, 1) is any measure space, 1 < p, g < oo satisfy

P q
and
felr(), geli(Q)
then fg € L}(Q) and J

/ 2l it < [l
Q
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REMARK 2.2.45 When p = g = 2, we obtain )

1/2
/Ifgldué /If\zdu /|g|2du
Q Q Q

which is a particular instant of basic inequality in analysis known as the
Cauchy-Bunyakovsky—Schwarz inequality
(See Proposition 3.7.4).

The numbers p, g such that

1 1
42 =1
P q

are called "conjugate exponents”.
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THEOREM 2.2.46 (Minkowski Inequality)
If (Q,%, 1) is any measure space and 1 < p < oo and f, g € LP(Q), J

then
f+gelP(Q) J
and
If + &l < IFlp + ligllo J
REMARK 2.2.47 From Theorem 2.2.46 we have that LP(Q) is a vector
space with a complete norm || - ||, thus a Banach space

(Definition 3.1.10 (f)) .
In the above proof we have used the elementary inequality which says that
if a,b>0and p> 1, then

(a+ b)P < 2P"1(aP + bP)

If 0 < p<1,then (a+ b)P < aP + bP.
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An interesting consequence of Holder's inequality is the following result.

PROPOSITION 2.2.48 If (2, %, i) is any measure space, 1 < p < r < oo, J
then

L(Q) C LP(Q) |
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Another useful consequence of Hélder's inequality is the next known as
"Generalized Holder's Inequality". We leave the proof to the reader.

PROPOSITION 2.2.49 If (2, X, i) is any measure space, fi € LP«(Q),
k=1,...,n, and

Zi =1,
Pk P )
then
f=fh--f, e LP(Q) )
and
Ifllp < NllplIfille - 1ol - |
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A third byproduct of Holder's inequality is the so-called "Interpolation
Inequality” which is very useful in applications.

PROPOSITION 2.2.50 If (2, X, i) is any measure space and
felP(Q)NL(Q2) withl<p<r<oo, J
then

fels(Q) J

forall p<s<rand

Iflls < IFNSIFIFY, J
where ) P
0<9<1 -—=-+—
5 P r
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A third basic inequality associated with integrable functions is the so-called
"Jensen's Inequality”.

THEOREM 2.2.51 (Jensen's Inequality)
If (, %, 1) is a finite measure space, / is an open interval in R, ¢: | = R
is a convex function, f € L1(Q) with f(Q) C / and o f € L}(Q),

then
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So far we have considered integrals with respect to a fixed measure p. Now
we will generalize by allowing the measure to vary too.

DEFINITION 2.2.52 Let (€2, X, 1) be a measurable space and {pn, pt}n>1
be set functions on X. J

We say that u, "converge setwise” to u, if for all A € X we have J

in(A) — p(A) )
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Using this notion we can have the following generalization of Fatou's
lemma.

PROPOSITION 2.2.53 If (€2, X) is a measurable space, {fn, f1}n>1 are
measures on X J

such that

Hn — p J

setwise and {f,},>1 is a sequence of nonnegative Y-measurable functions
such that

folw) = F(w) ]

for all w € Q, then

/fdug Iiminf/f,,d,un
n—oo
Q Q
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Using this proposition 2.2.53, we can have the following extension of the
Lebesgue Dominated Convergence Theorem.

PROPOSITION 2.2.54 If (2, X) is a measurable space, {in, i} n>1 are
measures on X such that p, — p setwise, {f,}n>1, {gn}n>1 are two
sequence of ¥-measurable functions satisfying

fo(w) = F(0), &n(w) - g(w), Ifa(w)] < gn(w) )

for all w € Q and
/g,,d,u,,—>/gd,u
Q Q

as n — oo, then

/f,,d,un—>/fd,u as n — oo.
Q Q

e VIO 1ot T O MR W PO Bt h g STek s T.2.2 — "2.2 VinTerpuposaHtue n 18 mas 2011 r. 49 / 54




Teopembl cxogumMocTu MpeobpasosaHne mep

Next we will state two change of variable results for integrable functions.
The first is a general result for transformations between measurable spaces
and the second is the classical finite dimensional change of variable
formula. We start with a definition.

DEFINITION 2.2.55 Let (€2, X1) and (S, X>) be two measurable spaces,
u: Q— S bea(X1,Xs)-measurable map and p be a measure on (2, %;). J

Then

v(A) = p(u"}(A)) ]

for all A € ¥, is a measure on X, called the "image measure” of 1 by u on

Y, and it is denoted by pu~?.

Using this notion we can have the first change of variables formula. For a
proof we refer to Aliprantis-Border (1994), p. 365. J
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PROPOSITION 2.2.56 If (2,X1), (S,X2) are two measurable space,
u: Q— Sisa (X, X2)-measurable map, p is a measure on (2,X;) and
v = pu~t is the image measure by u on ¥5, then

(a) if f € L1(S,v), we have f ou € LY(Q, i) and
/fdyz/(fou)du;
S Q

(b) if v is o-finite, f: S — R is ¥p-measurable and f o u € L}(Q, i), we
have

fell(s,v)

/fdz/:/(fou)du.
S Q
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Recall that if U C RN is open and u: U — RN is a function having partial
derivatives for every x € U, then the matrix

(aw>N

9%/ j j—1

is called the "Jacobian matrix”" of u and its determinant is known as the
"Jacobian” of u and is denoted by J,(x).
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The next result is the classical finite dimensional change of variables
formula. A proof can be found in Parthasarathy (1977), p. 178. For a more
general result using Hausdorff measures we refer to Evans-Gariepy (1992),
p. 99 and 117.

PROPOSITION 2.2.57 If A,B C RN are Lebesgue measurable sets,

u: A— B, there exist open sets U C A and V C B such hat u: U — V' is
a diffeomorphism and Ay (A\U) = An(B\V) = 0, then for every

f € L1(B, \n), the function (f o u)|J,| defined a.e. on A, belongs to

L1(A, \y) and we have

/fd)\,v = /(fo u)|Ju| dAn.

B A
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We conclude this section with a useful criterion for the almost everywhere
convergence of a sequence of measurable functions.

PROPOSITION 2.2.58 If (22, %, i) is a finite measure space and
fn,f: Q — R* n>1, are Y-measurable functions, J
then

folw) = F(w) ]

p-a.e. on  if and only if for every § > 0

M(U{weﬂ : |fk<w)—f(w)|za}) -0
k=n

as n — oQ.
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