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Beegexue

The Lebesgue measure on RV is in a sense the product of N-copies of the
one-dimensional Lebesgue measure, since the volume of an N-dimensional
rectangle is the product of the lengths of the sides. In this section we
extend this idea to a general setting.
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MoaroToBnTeNbHbIE pesynbTaTHI
DEFINITION 2.4.1 Let (Q1,%1) and (2, X2) be two measurable spaces.
For A€ ¥ and B € ¥,, the set A x B is said to be a "measurable
rectangle”.

The smallest o-field of subsets of 27 x Q5 which contains all measurable
rectangles (i.e. o(R) where R is the collection of all measurable
rectangles) is denoted by ¥; x X5 and it is called the "product o-field".
Given C C Q1 x Q5 and wy € Q1, wells, we set

C(wi) ={w2€Qy : (w1,w2) € C}
and
Cwr) ={w1 €21 : (w1,wp) € C}

and these sets are called the "Q;-section” and the "Q5-section” of C,
respectively.
Similarly for a function f on Q1 x Q5 and w1 € Q1, w2, we put

fwl(wz) = f(wl,WQ) and fw2(wl) = f(wl,WQ)

and these functions of only one variable are called the "Q1-section” and the
"Qy-section” of f, respectively.
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MponsseneHne mep MoaroToBuTeneHble pesynbTaThl

REMARK 2.4.2 Note that Y7 x Y5 is not the Cartesian product of the

o-field, although the notation may suggest so.

If
C,C CUxQy, i€l

et o)
e (1)

Cc (wl

and w; € Qq, then

and

(xc)(w1) = Xc(w)-

v
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MponsseneHne mep MoaroToBuTeneHble pesynbTaThl

PROPOSITION 2.4.3 If (Q1,%1) and (2, X) are measurable spaces,
CeXyx¥Xpand f:Q; xQ — R*=RU{£oo} is L1 X Xr-measurable
function, then

(a) for every wy € Q1 and every wy € Q) we have

Clw) eXy C(w) € xy;

(b) for every wy € Qy, f,, is Xo-measurable
and for every wy € Qo, f,,,, is X1-measurable.
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MponsseneHne mep MoaroToBuTeneHble pesynbTaThl

Before stating and proving the first theorem of this section, we state a
lemma whose proof is straightforward and it is left to the reader.

LEMMA 2.4.4 If (Q1,%1) and (€2, X2) are measurable spaces, then J
(a) the family F of all finite pairwise disjoint unions of measurable
rectangles is a field of subsets of Q1 x Qy; J
(b) X1 x X5 is the smallest monotone class containing F. J
[MpumeyaHume.

Families that satisfy (a) and (b) of Proposition 2.1.9 are called "monotone
classes':

(a) if {An}tn>1 C S is increasing, then |5, An € S; or J

(b) if {An}n>1 C S is decreasing, then ﬂn21 A, €S. J
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MponsseneHne mep MoaroToBuTeneHble pesynbTaThl

THEOREM 2.4.5 If (1, %1, 1) and (Q2, Xo, p2) are o-finite measure
spaces and C € X1 X ¥, then

(a) w1 — p2(C(w1)) is X1-measurable;

(b) wo — p1(C(w2)) is Xp-measurable;

(©)
[ (€ dia = [ ps(Cen)) da

Ql Q2
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MoaroToeuTentHele peaynbTaTe!
This theorem leads to the definition of the product measure which is made
through the next result.

THEOREM 2.4.6 If (Q1,%1,11) and (Q2, Xo, p2) are o-finite measure
spaces and _
1 X pp: g X Xp —» Ry =Ry U {400}

is defined by

(i1 X 2)(C) = / 2 Clwr)) dp = / p1(Clw2)) dpa.

Ql Q2
(see Theorem 2.4.5(c)),

then

11 X 2 is a o-finite measure and for every measurable rectangle A x B, we
have

(11 % p2)(A x B) = pa(A)p2(B)
recall that 0 - co = 0).

e VIO 1ot W O MR W PO Bt Wh g STek st T.2.4 — "2.4 lMpousseneHne mMeg 26 mas 2011 r. 9 /39




MponsseneHne mep Onpepenexne nponsseneHusi mep

DEFINITION 2.4.7 The o-finite measure
M1 X 2 21 XZQ—>R+:R+U{+OO}

established in Theorem 2.4.6 is called the "product” of 1

and .

For every measurable rectangle A x B we have

(11 x p2)(A x B) = p1(A)p2(B).

REMARK 2.4.8 The product measure 1 X 2 is uniquely

the requirements that it is a measure on X1 X ¥5 and that

(11 x p2)(A x B) = pa(A)p2(B).

for every measurable rectangle A x B.

determined by

A.cb.-Mm.H., npocp. FO. 3. Jlunke (MncTut S0 B R o ) [T T S VIS
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NHTerpanes n nponssenexHns mep

Now we are ready to examine the relations between integrals on a product

space and integrals on the component spaces.
The basic result in this direction is the "Fubini-Tonelli theorem”, which
enables us to evaluate integrals with respect to product measures in terms

of iterated integrals.

e VIO 1ot T O MR W) PO Bt Wh g STek st T.2.4 — "2.4 lMpousseneHne meg 26 masi 2011 r. 11 / 39




NHTerpanes n nponssenexHns mep

PROPOSITION 2.4.9 If (Q1,%1, 1) and (22, X2, o) are o-finite measure
spaces and

f: Ql XQQ—>R+:R+U{+OO}
is X1 X Xo-measurable function, then
(a)
w2 —>/f(wl,WQ) d,u,l
93]
is Xo-measurable and
w1 —>/f(wl,WQ) d,u,2
Q

is ¥ 1-measurable;

(b)

/de1><M2 / / (w1) dpy duz—/ /ﬁul(w2)dﬂ2 dp
2

leQz
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NHTerpansl n npousseneHnst mep Teopembl Pybunun-ToHennn

THEOREM 2.4.10 (Fubini-Tonelli Theorem)
If (Q1,X1,p1) and (Q2, X2, o) are o-finite measure spaces,

fe E(Ql X Q27IU/]_ X /,LQ)

and
h1(u)1)=/f(w1,w2)du2, h2(u)2)=/f(w1,w2)du1,
QQ Ql
then
hi € L(Q1, 1),  h2 € L(Q, u2)
and

/ fd(ul X Mg) = /hl dﬂl = /h2 dMZ-

Ql XQQ Ql QZ
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NHTerpansl n npousseneHnst mep Teopembl Pybunun-ToHennn

REMARK 2.4.11 The measure space (21 x Q2,21 X Xo, i1 X f2) is
seldom complete, even if (1, X1, 11) and (Q2, X2, o) are both complete
measure spaces.

Indeed, if complete (1, %1, 111), (Q2, X2, u2) are two o-finite measure
spaces such that there exist

ACQ A¢ys,

and a nonempty set B € ¥ with p2(B) = 0, then the o-finite measure
space
(1 % Q2,21 X o, 11 X pi2)

is incomplete.

In particular, the o-finite measure space
(R2, L x L, X=X x )

is incomplete.
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Teopemb Py6uHm-Tonennn
Let (1 x Q2,21 X X2, 1 X u2) denote the completion of the measure
space (21 x Q2,%1 X ¥, 1 X p1) (see Proposition 2.1.36).
The next lemma allows us to extend the Fubini-Tonelli theorem to this
completed product measure space.

LEMMA 2.4.12 If (Q1,%1, p1) and (22, X2, o) are o-finite measure
spaces, C € ¥1 X ¥ with

(11 % p2)(€) =0

and D C C,

then

p1(D(w2)) =0

[2-a.e. on €y and
p2(D(w1)) =0

p1-a.e. on 3
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Teopemb Py6uHm-Tonennn
THEOREM 2.4.13 (Extended Fubini-Tonelli Theorem)
If (1,%1,p1) and (Qa, X2, u2) are complete o-finite measure spaces and
f: Q1 xQ — Ry =R, U{+oc}isa X1 x Xo-measurable function, then
(a) for pp-almost all wp € Q5 the function

w1 — f(wl, (,UQ)
is X_1-measurable and for ui-almost all wy € Q1 the function
W — f(wl, CUQ)

is ¥ >-measurable;
(b) the function

wgr—>/f(w1,w2)d,u1
Q

is ¥ o-measurable and the function

le/f(wl,WQ)d,UQ
Q

is X 1-measurable; (cm. npogosxeHune Ha cnegytoliem cnaiige:)
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VSEpaii) ;- e s
Teopema 2.4.13

Venosue (c)

@ [ rdGasm- [ (ﬂ/ funlwr) dpn | dpip =
Q1% Q) 1
Q/(ﬂ/ fou(w2) dpia | dpn.
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NHTerpansl n npousseneHnst mep Teopembl Pybunun-ToHennn

Next we will present a generalized version of the Fubini-Tonelli theorem

using transition measures.
Transition measures (in particular transition probabilities) are the main tool
in the relaxation of control systems (Section A.4.1) and in stochastic

games (Section A.5.5).
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NHTerpansl n npousseneHnst mep Teopembl Pybunun-ToHennn

DEFINITION 2.4.14 Let (€21, %1) and (€22, X2) be two measurable spaces.
A map m: Q x ¥y — Ry =R U{+o0o} is said to be a "transition
measure” if

(a) for every B € ¥, the function w; — m(wi, B) is £1-measurable; ]

(b) for every w1 € Qy, the set function B — m(wi, B) is o-finite measure J
on 22.

We say that m is a "o-finite transition measure” if
L =JA, Aex
n>1
and for all w; € Q1 we have
m(wz, As) < +00

for all n > 1.
Finally we say that m is a "transition probability”, if for all w; € Q7 we have

m(nm 5 Q’)‘ =1.
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NHTerpansl n npousseneHnst mep Teopembl Pybunun-ToHennn

REMARK 2.4.15 Transition probabilities have the following interpretation:
there are two systems whose states are described by the points in the sets
Ql and QQ.

The statistical behavior of the outcomes of the second system depends on
the state of the first system.

If the state of the first system is wy € €1, then the probability that the
state of the second system is in a set B is described by the transition
probability m(wy, B).

e VIO 1ot W O MR W PO Bt Wh g STek st T.2.4 — "2.4 lNMpousseneHne mMeg 26 masi 2011 r. 20 / 39



NHTerpansl n npousseneHnst mep Teopembl Pybunun-ToHennn

EXAMPLES 2.4.16 (a) Let p be a o-finite measure on (€22, X») and set
m(w1, B) = p(B)

for all w; € Q7 and all B € Y. Then m is trivially a transition measure.

(b) Let f: [0,1] x [0,1] — R be a continuous function and let
m(x, 8) = [ £lx.y) dAW).
B

where \ denotes the Lebesgue measure on [0,1]. Then m is a transition
measure. /
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NHTerpansl n npousseneHnst mep Teopembl Pybunun-ToHennn

[MpomonxeHue Mpumepa 2.4.16
(c) P =(pj)7 =y is an n x n matrix with nonnegative entries (i.e. p; > 0
forall 1 <i,j <n)and
n
> pi=1
j=1

(i.e. each row adds up to 1). Let
Ql :Q2 :{1,2,...,17}

and for any k € Q1 and B C 5 set

m(k, B) = Z pij-

jeB

Then m is a transition probability and the matrix P is called the associated
transition probability matrix.
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NHTerpansl n npousseneHnst mep Teopembl Pybunun-ToHennn

PROPOSITION 2.4.17 If (Q1,%1) and (€2, X2) are measurable spaces,
f: Q]_ XQQ—>R+:R+U{+OO}

is a X1 X Xp-measurable function and m(-,-) is a o-finite transition
measure on 7 X X, then

w1 H/f(wl,wQ)m(wl,dwz)
Q

is a Y1-measurable function from Q; to R,
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NHTerpansl n npousseneHnst mep Teopembl Pybunun-ToHennn

DEFINITION 2.4.18 Let (€21,%1) and (€2, X2) be measurable spaces.
A o-finite transition measure on (€21, ¥5) m is said to be "uniformly
o-finite”, if there exist sequences

{Bk}ti>1 € X4

and
{Dn}n21 € Z2
such that
UBkZQL UDnzﬂz
k>1 n>1
and

sup m(wy, Dn) < 400
wleBk

for all k,n > 1.
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NHTerpansl n npousseneHnst mep Teopembl Pybunun-ToHennn

PROPOSITION 2.4.19 If (Q1,%1) and (2, X2) are measurable spaces, m
is a uniformly o-finite transition measure on (Q1,X2), u is o-finite measure

on (21,%1) and C € X3 X X, then

(O = [ | [ xelorwamier,duz) | di

(931 Qo

is well defined and it is a o-finite measure on X1 X Y.
Moreover, if B
f: Ql XQ2—>R+:R+U{+OO}

isa X1 X Xp-measurable, then

/ fdu_/ /f(wl,wg)m(wl,dwg) d.

Ql XQQ Ql Q2
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NHTerpansl n npousseneHnst mep Teopembl Pybunun-ToHennn

REMARK 2.4.20 If m(w1, B) = m(B) (i.e. is independent of wy, with m
o-finite measure on Y5, then the o-finite measure v established in
Proposition 2.4.19 has the property that

V(A x B) = u(A)m(B)

forall Ac ¥; and B € ¥,
i.e. v is the product of u and m
(see Definition 8.4.7).

Now we can state the generalized version of the Fubini-Tonelli theorem.
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UGEE=) Y A
THEOREM 2.4.21 (Generalized Fubini-Tonelli Theorem)
If (21,%1) and (€2, X2) are measurable spaces, p is a o-finite measure on
31, mis a uniformly o-finite transition measure on Q1 x X, v is the

o-finite measure on X; X ¥, obtained in Proposition 2.4.19 and
fe Ll(Ql X Qz,l/), then

/ e o) ) s

Q
p-a.e. on €Qy;
/ /]f(wl,wz)]m(wl,dwg) dpu < 400
(931 [92)
and
/ fdu—/ /f(wl,wz)m(wl,dwg) du.
leﬂg Ql QZ
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NHTerpansl n npousseneHnst mep Teopembl Pybunun-ToHennn

REMARK 2.4.22 If m(w1, B) = m(B) (i.e. m is independent of w; € Q1)
and m is o-finite measure on ¥, then Theorem 2.4.21 reduces to the
classical Fubini-Tonelli theorem (Theorem 2.4.10) .

The foregoing definitions and properties readily extend to any finite number
of sets and measurable spaces.

In the infinite case some of the definitions have to be modified in order to
preserve these properties (compare with the corresponding topological
situation, see Section 1.2).
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UGEE=) Y A
DEFINITION 2.4.23 Let {(€2,, X,)}n>1 be measurable spaces. Set

Q:HQ,,.

n>1
k
Bk g H Qn:
n=1
then the set

Bk>< I]: Qn

n>k+1

is called a "cylinder” with base B.
The cylinder is said to be "measurable” if

k
By € Hz,,.
n=1
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VSEpaii) ;- e s
[pononxerve Onpeanenerns 2.4.23

k
Bx = H An
n=1

with A, € ¥, forn=1,2,..., k, then By is said to be a "product
measurable cylinder” or "interval” in € with sides

{An}hor.

The minimal o-field over the measurable cylinders is called the "product” of
the o-fields {X,},>1 and it is denoted by

II=-

n>1
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REMARK 2.4.24

is also the minimal o-field over the product measurable cylinders.
If all X,, coincide with a fixed o-field X, then

I

n>1

is denoted by
>,

Also if all ©,, coincide with a fixed set €, then

112

n>1

is denoted by

Q.

eV IO 1ot T O MR W) PP Bt Wh g STek st T.2.4 — "2.4 lMpousseneHne mMeg 26 masi 2011 r. 31/ 39

v




NHTerpansl n npousseneHnst mep Teopembl Pybunun-ToHennn

In this setting the classical product measure theorem (Theorem 2.4.6)
extends as follows (for a proof we refer to Dudley (1989), p. 201).

THEOREM 2.4.25 If {(Q2, X5, ptn) }n>1 are probability spaces,

Q:HQ,, and Z:HZ,,,

n>1 n>1

then there exists a unique probability measure 1 on ¥ such that
n
p{w = (W1 €Q ¢ w1 € A, wn € Ap}) = [ ] (Ax)
k=1

foralln>1andall Ay € Xy, k=1,2,....
We call i the product of the u, and write

p= ]

n>1
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NHTerpansl n npousseneHnst mep Nuterpan danuans

Thus far our approach has been to introduce integration using the concept
of measure.
Now we will reverse this process and given an "integral’ operation with
some suitable properties we will show that it can be represented as the
integral with respect to some measure.
This integral is known as the "Daniell Integral”.
So let V be a family of R-valued functions on some set Q.
We assume that V is a vector lattice, i.e. a vector space (i.e. if f,g € V
and c € R, then c¢f + g€ V) and if f,g € V, then
fVvg=max{f,g}eV.
Note that this implies that we have also that for any f, g € V,
fAg=min{f, g} € V.
Indeed observe that

frg=—((-)V(-g)).
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NHTerpansl n npousseneHnst mep Nuterpan danuans

EXAMPLE 2.4.26 For any measure space (2, %, u), LP(Q), (1 < p < 0) is
a vector lattice. J

Also if X is a topological space, the space Cp(X) of all bounded,
continuous R-valued functions on X is a vector lattice.

However, C}(R) = {f: R — R : f is continuously differentiable} is a
vector space but not a vector lattice.
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NHTerpansl n npousseneHnst mep Nuterpan danuans

DEFINITION 2.4.27 Given a set Q and a vector lattice V of real functions
on Q, a "Daniell functional” or "Daniell integral”, is a function /: V — R
such that

(a) I is alinear, i.e. I(cf +g) =cl(f)+I(g) forall f,g € V and all c € R; |

(b) I is nonnegative, i.e. if f € V and f(w) > 0 for all w € Q, then
I(f) >0; }
(c) I(f) | 0 whenever f, € V and fp(w) | 0 for all w € Q as n — oo. ]
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NHTerpansl n npousseneHnst mep Nuterpan danuans

REMARK 2.4.28 Condition (c) is clearly equivalent to each of the following
conditions: )

(c1) if {fo}n>1 € V is an increasing sequence and there exists a function
f € V such that

f < lim fp,
n—oo
then
I(F) < lim I(f,),
and )

(c2) if {fo}n>1 € V are nonnegative functions and g € V such that

g<)y f,

n>1

then

Ig) < Y I(Fy).
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NHTerpansl n npousseneHnst mep Nuterpan danuans

EXAMPLE 2.4.29 Let V = C([0,1]) and /: V — R is the classical

Riemann integral.
Clearly conditions (a) and (b) of Definition 2.4.27 are satisfied and

condition (c) follows from Dini's theorem (see Theorem 1.6.28) and the
properties of the Riemann integral.
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NHTerpansl n npousseneHnst mep Nuterpan danuans

Here is the main theorem to this alternative approach to integration.
For a proof, we refer to Dudley (1989), p. 110 or Royden (1968), p.
297-299.

THEOREM 2.4.30 (Daniell-Stone Theorem)

If V is a vector lattice of R-valued functions on a set Q such that
fAleVforall f €V and [ is a Daniell integral on V, then there is a
o-field  of subsets of Q and a measure p on ¥ such that

1) = [ £

Q

forall f € V.
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NHTerpansl n npousseneHnst mep Nuterpan danuans

PROPOSITION 2.4.31 If V is a vector lattice of R-valued functions on a
set Q, 1 € V and X is the smallest o-field of subsets of Q such that each
f € V is o-measurable, then for every Daniell functional / there is a unique
measure 4 on X such that

i) = ! f d,

forall f € V. )

REMARK 2.4.32 In general constant functions need not belong to the
vector lattice V.

Any vector lattice V containing the constant functions is called a "Stone
vector lattice”. )
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