MATEMATUYECKMIT MHCTUTYT uM. B. A. CTeExiioBA PAH
MOCKOBCKHII TOCYJJAPCTBEHHBII YHUBEPCUTET UM. M. B. JlJomoHOCOBA
NHCTUTYT MATEMATUKM 1 MEXAHUKU uM. H. H. KracoBckoro YrO PAH

MEXKYHAPOAHBIN UHCTUTYT IPUKJIAJJHOTO CUCTEMHOI'O AHAJIM3A

CUCTEMHBIN AHAJIN3:
MOIEJIMPOBAHME U YITPABJIEHUE

Matepuansl MexXgyHapOgHOM KOH(epeHIIN,
MOCBAILIEHHOM MaMATY akafieMuka A. B. Kpspxumckoro,
Mocksa, 31 mas — 1 utoasg 2018 1.

SYSTEMS ANALYSIS:
MODELING AND CONTROL

Materials of the International Conference
in memory of Academician A.V. Kryazhimskiy,
Moscow, May 31 - June 1, 2018

Maremarmyeckuii ”HCTUTYT UM. B. A. CreknoBa PAH
MAKC IIpecc
Mocksa — 2018



ALGORITHMS FOR GLOBAL MINIMUM SEARCH
OF ATOMIC—MOLECULAR CLUSTERS
OF EXTREMELY LARGE DIMENSIONS*

Anton Anikin, Alexander Gornov, Pavel Sorokovikov

Matrosov Institute for System Dynamics and Control Theory of SB RAS,
Irkutsk, Russia

htower@icc.ru, gornov@icc.ru, pavel2301s@gmail.com

The problem of finding low-potential atomic—molecular clusters is one of
the classical problems of computational chemistry. From a mathematical
point of view, the problem is reduced to the search for a minimum of poten-
tial functions—special models, which have already been created in several
hundreds (see, for example, [1]). The main difficulty in this class of problems
is their nonconvexity, which is expressed in a huge number of local extrema
of potential functions—experts give estimates that, in some cases, prove the
exponential growth of the number of local extrema as a function of the num-
ber of atoms (optimized variables). The most known and often considered
potential functions in the scientific literature are the models of Lennard—
Jones, Morse, Keating, Dzugutov, Gupta, and others [2-5]. Since the exact
value of the global minimum is unknown in most cases, in the works of this
direction the “best of known” principle is used—the presented solution is
“probably optimal” (putative) until one of the experts has produced the
best solution.

Regular studies of the optimization problems formulated for the poten-
tials of atomic—molecular clusters were initiated in the 1990s by specialists
from the United Kingdom and the United States. At this stage, record-
breaking indicators of the size of the problems were, for example, for the
Morse potential of only 147 atoms (441 variables), but the number of local
extrema in record-breaking problems was already estimated to be of the
order of 1099,

In recent years, groups of specialists from China and Portugal have joined
the correspondence competition to optimize Morse models (see, for exam-
ple, [6, 7]). Calculations by these groups were performed on powerful su-
percomputer systems—perhaps the most powerful in their countries. In
the publications of the Chinese group, tables of systemic calculation of
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problems for Morse models are presented up to dimensions of 240 atoms
(720 variables) inclusive. The Portuguese group, using the original “Big
Bang” method, managed to clarify the decisions of the Chinese group for
the maximum (in size) Morse cluster of 240 atoms among the presented ones.
At the same time, the results obtained by the Portuguese group with careful
analysis and visualization are radically different from the record results of
the Chinese group both in terms of the physical dimensions of the cluster
and in its geometric properties.

The report discusses algorithms and computational schemes that made it
possible to replicate the best achievements of the Chinese and Portuguese
specialists (240 atoms for the Morse model) and regularly obtain solutions
for potential functions of significantly larger dimensions without using par-
allel computing technologies on a working laptop.

The results of computational experiments for Morse models with dimen-
sions up to 280 atoms (840 variables) are presented.
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