Разработка цифровых моделей рельефа для мелководных зон и прибрежных территорий оз. Байкал, Иркутского водохранилища и нижнего бьефа Иркутской ГЭС

Алексей Евгеньевич Хмельнов, А.С. Гаченко

Институт динамики систем и теории управления имени В.М. Матросова Сибирского отделения Российской академии наук, Иркутск http://idstu.irk.ru

26 августа 2022г.

Постановка задачи

Обзорная карта исследуемых участков

Для выполнения этих работ необходимо иметь качественные цифровые модели рельефа мелководных зон и прибрежных территорий, подверженных потенциальным ущербам при регулировании уровня озера Байкал, с выделением отдельных участков (для озера Байкал, Иркутского водохранилища и нижнего бьефа Иркутской ГЭС).

Источники информации о наземном рельефе

Построение совмещённой модели надводного и подводного рельефа на Братском водохранилище

Использование:

- Определение уровня подземных вод (влияет на колодцы);
- Определение уровня воды в районе водозаборов.

Источники информации о рельефе:

Были выбраны:

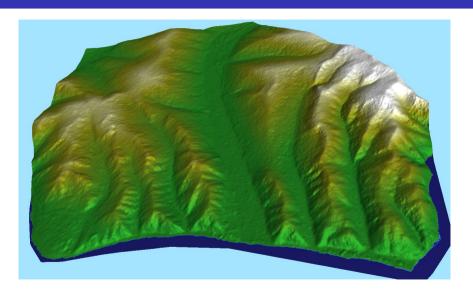
- изолинии и отметки высот векторных топографических карт;
- оцифровка отметок глубин и изобат с бумажных лоций;
- промеры глубин эхолотом в ходе экспедиции.

также рассматривались ЦМР:

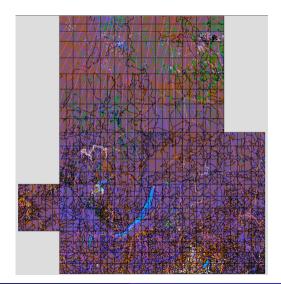
- глобальные модели рельефа SRTM 1", ASTER 1", ALOS";
- коммерческая WorldDEM. Тогда было 12м/пиксел и не было на нашу территорию. Сейчас 5м/пиксел и недоступна.

Используемые источники информации требуется реалистично согласовать.

SRTM $1'' \approx 30 M$


ALOS $1'' \approx 30 M$

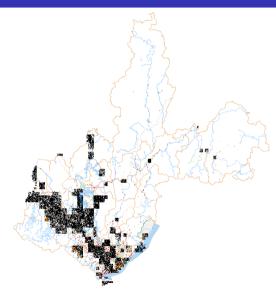
WorldDEM 12м - Листвянка

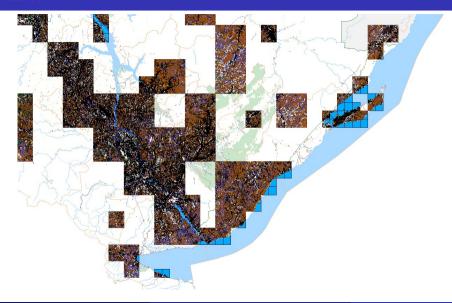


Топографические карты масштабов 1:50000,1:100000,1:1000000

Сервис получения карт

На сайте крупного проекта: http://baikal-project.icc.ru (Цифровые ресурсы/Сервис получения карт).



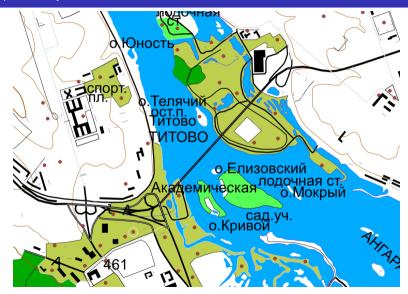

Листвянка 1:50000

Топографические карты масштаба 1:25000

Байкал 1:25000

Листвянка 1:25000

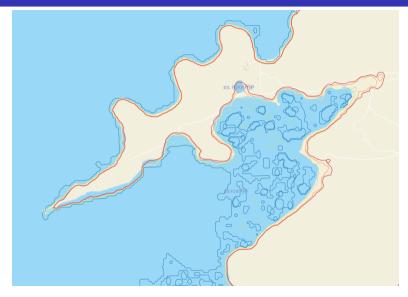
Сечение рельефа у любых открытых карт — 20м! Иначе это - карты ДСП, получаемые по 25км 2 .


Сопоставление топографических карт 1:50000 со спутниковым снимком

Карты могут быть не везде актуальны

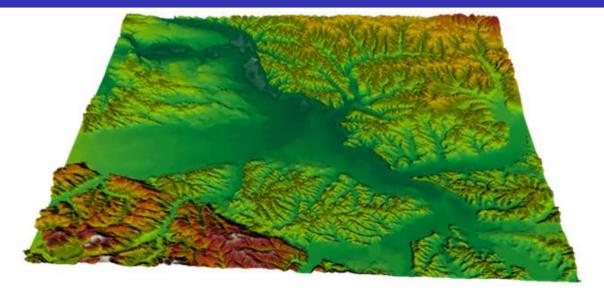
В новой версии лучше

SRTM - тоже не везде актуальна

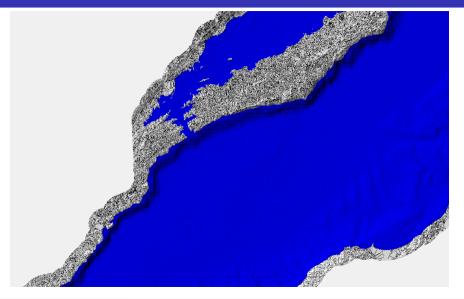

То же место на SRTM в 2002 г.


Изолинии по SRTM 1" - Ольхонские ворота

Изолинии по SRTM 1" - Увеличенный фрагмент



Изолинии по SRTM 1" - Сарма

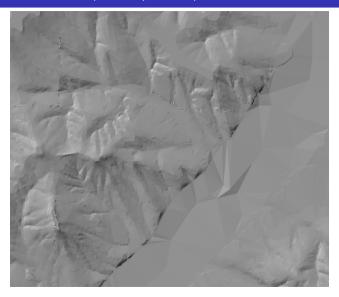


Триангуляции, как цифровые модели рельефа

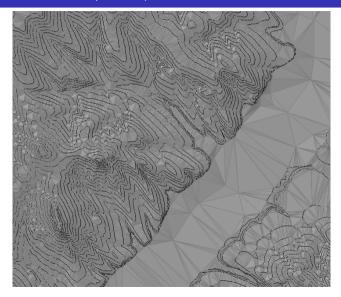
ЦМР, полученная из топоосновы 1:50000

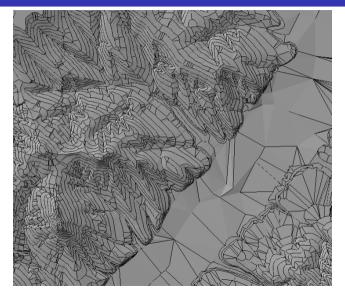
Совмещённая ЦМР, из топоосновы 1:50000 и подводного рельефа 180м

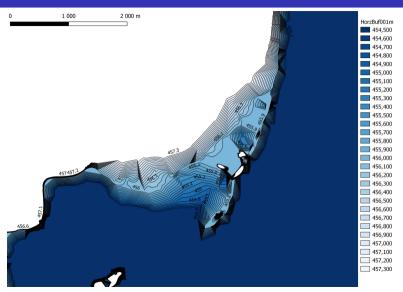
Совмещённая ЦМР, из топоосновы 1:50000 и подводного рельефа 180м - фрагмент

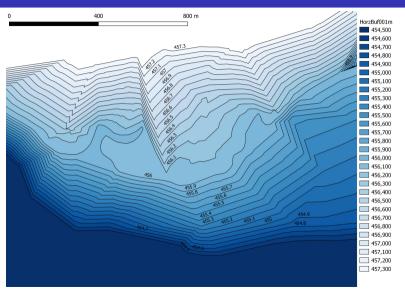

Исправление артефактов триангуляции, построенной по изолиниям

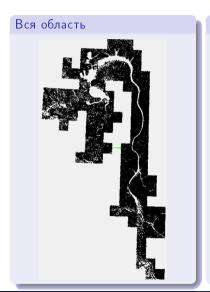
- Триангуляции, построенные по изолиниям содержат хорошо заметные артефакты горизонтальные ступени (террасы), построенные на точках изолинии одного уровня;
- Это сильно портит результат при сгущении изолиний (появляются срезанные изгибы у добавленных изолиний);
- Разработан алгоритм устранения таких артефактов за счёт добавления жёстких рёбер;
- Комбинированная триангуляция содержит 4099106 точек;
- После исправления в ней содержится 6610182 точек.


Комбинированная модель рельефа


Комбинированная модель рельефа исправленная


Комбинированная модель рельефа


Комбинированная модель рельефа исправленная

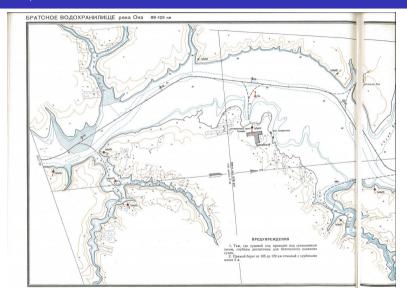

Площадные изолинии, как горизонтальные сечения рельефа

Площадные изолинии, как горизонтальные сечения рельефа

Триангуляция - модель рельефа Братского водохранилища

Подводный рельеф

Модель прибрежного рельефа


Использование:

- Влияние колебаний уровня воды на прибрежные и подводные объекты (водозаборы,пристани,строения);
- Моделирование процессов затопления/обмеления.

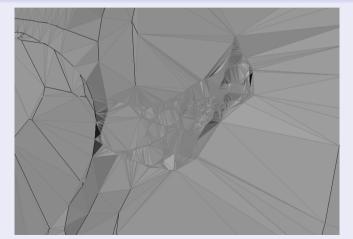
Источники информации о подводной части рельефа:

- лоции, карты неточно, недостаточный шаг изобат (например, на лоции 2 м, 5 м и всё);
- многолучевой эхолот для него мелко;
- эхолот и т.п. требует посещения каждой измеряемой точки, долго;
- анализ спутниковых снимков для определения глубин по цвету воды и т.п. м.б. нужны снимки высокого разрешения, требуется подбор большого числа параметров;
- контура береговых линий при различных уровнях воды.


Лист лоцманской карты

Обработка промеров глубин эхолотом

- Для промеров использовался портативный эхолот с ГНС бытового уровня на борту;
- Точность измерения координат эхолотом несколько метров;
- Большая проблема с получаемыми от него данными округление координат до метров \rightarrow даёт ступенчатую траекторию;
- Дополнительно использовался профессиональный ГНС геодезического уровня;
- Измерения двух ГНС сопоставлялись с использованием меток времени.


Сопоставление траекторий, измеренных эхолотом и геодезическим ГНС

Уточнение модели рельефа по промерам глубин

- Создаём вспомогательную триангуляцию по измерениям эхолота;
- Удаляем изменяемый фрагмент из исходной триангуляции;
- Заменяем этот фрагмент на вспомогательную триангуляцию.

Совмещённая модель рельефа с фрагментом, полученным по промерам глубин

Данные ДЗЗ для исследования прибрежного рельефа

Позволяют получить наиболее широкий охват территории.

Съёмка с таких спутников, как Sentinel и LandSat выполняется регулярно, и такие данные распространяются свободно при разрешении 10 м/пиксел для основных каналов.

Методы использования данных ДЗЗ для получения информации о подводном рельефе до некоторой глубины:

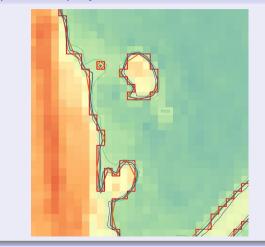
- использование стереоскопических спутниковых изображений высокой точности;
- обработка спутниковых радарных изображений различных типов;
- инверсия батиметрии из данных о цвете воды;
- восстановление батиметрии по характеристикам волнения.

Контура береговых линии

Могут рассматриваться, как изолинии прибрежного рельефа.

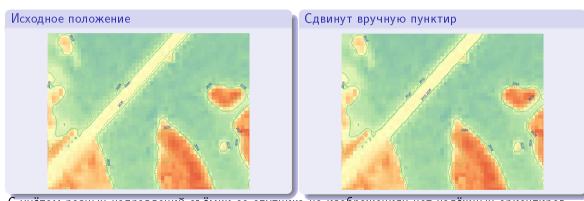
при следующих условиях:

- уровень воды постоянен вдоль береговой линии в каждый момент озеро, водохранилище. Для правильной интерполяции уровня вдоль берега реки требуется модель её течения;
- волнением можно пренебречь;
- приливы и сейши малы (для Байкала 32 мм и 60 мм);
- отсутствие льда и снега;
- имеются колебания уровня воды с течением времени несколько изолиний для разных уровней.


Наш подход: выделение изолиний без бинаризации

Шаги обработки снимка

- Вычислить растр NDWI (Normalized Difference Water Index) (для Sentinel-2 используем каналы B03 Green и B08 Visible and Near Infrared: NDWI = B03-B08/B03+B08);
- Построить изолинии растра NDWI с шагом 0.05 от 0.0 до 0.25;
- Выбрать наилучший порог (обычно 0.1).


В результате получаем субпиксельный уровень точности, превышающий 10 м.

Сравнение результатов

Точность горизонтального позиционирования

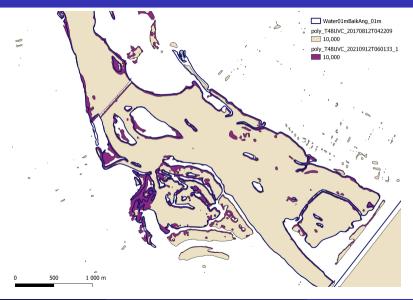
Её оказалось недостаточно для работы на субпиксельном уровне. Пример: 2016 г. – сплошная линия, уровень воды ниже, 2020 г. – пунктир, уровень воды выше.

С учётом разных направлений съёмки со спутника на изображениях нет надёжных ориентиров, позволяющих найти сдвиг.

Алгоритм поиска наилучшего сдвига

Использованы пересекающиеся изображения в разных проекциях (WGS 84/UTM zone 47N и WGS 84/UTM zone 48N) для разных моментов времени: 20180827 (уровень 396.41 м, синяя линия) и 20180825 (уровень 396.32 м, фиолетовая), изолинии на уровне 0.1, сдвиг (3.63 м, 8.86 м) найден за 15 шагов.

Исходное положение


на фоне NDWI для 20180827

Результат сдвига

на фоне NDWI для 20180825

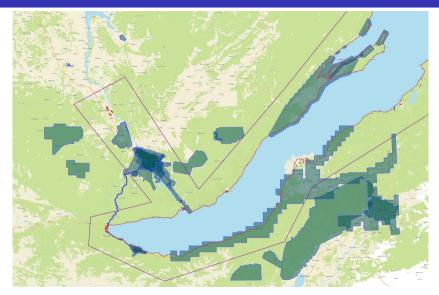
Водные объекты в Иркутске 12.08.2017 (1300 m^3/c) и 12.09.2021 (3600 m^3/c) по данным Sentinel

Уточнение наземной модели рельефа с использованием аэрофотосъёмки (AФC)

Найденные

Архивные данные КадастрСъёмки

- использовались самолёт, камера высокого разрешения 80 Мп, лидар (ВЛС воздушное лазерное сканирование)
- в архиве есть бо́льшая часть интересующих нас участков
- Это ЦМР, а не ЦММ


Всего покупаем 32 км^2 .

Съёмка с БПЛА

- Квадрокоптер долго
- БПЛА самолётного типа ГеоСкан 101 технологично
- геодезическая привязка обязательна

Всего надо снять $\sim 10 \text{ км}^2$.

Карта покрытия лидарной съёмкой

Байкальск – Лидарные точки

Байкальск – 3D модель по точкам

Планы полёта квадрокоптера в Pix4Dcapture

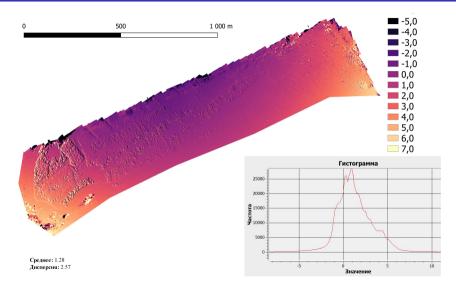
Затраты времени при съёмке

С квадрокоптера

- Значительная часть участков находится в круге радиусом 80 км вокруг Иркутского аэропорта, в котором квадрокоптер не поднимается выше 100 м;
- 🔸 Одной батареи хватает на съёмку поперечными галсами менее 10 га с такой высоты;
- У нас 4 батареи можем снять не более 0,4 км²;
- Далее надо снова зарядить батареи, зарядка одной занимает 1,5 часа;
- Если первые полёты выполнить утром, и сразу начать зарядку, то может получиться сделать ещё одну съёмку вечером.

С БПЛА самолётного типа

- Батареи хватает на 1 час;
- ullet Одной батареи хватает на съёмку поперечными галсами $\sim\!1$ км 2 с высоты 150 м;
- Можно летать на высоте 220 м в зоне аэоропорта площадь ещё увеличится.


но

- более продолжительное время подготовки к полету (\sim полчаса);
- 💿 бо́льшая часть времени уходит на развороты между галсами при поперечном облёте узких участков;
- возможна болтанка при ветре смазы на фото.

Ортофотоплан фрагмента местности в районе Иркутского водохранилища, съемка БПЛА с высоты 220 м

Разность ЦМР для полётов на высотах 150м и 220м и её гистограмма

Ортофотопланы больших участков, снятые с ГеоСкан 101

Заключение

- Основным используемым нами представлением моделей рельефа являются триангуляции;
- Триангуляции позволяют строить профили вдоль любых траекторий и дополнительные изолинии;
- Могут строиться изолинии, как площадные поперечные сечения;
- Получен набор совмещенных 3D модели рельефа для ряда водных объектов и их участков (Иркутское водохранилище, Братское водохранилище, поселок Листвянка, фрагменты озера Байкал);
- Получена комплексная модель совмещенного рельефа на протяжении от ГЭС в городе Иркутске до впадения реки Белая в Ангару (протяженность порядка 132 км);
- Разработана оригинальная технология сопряжения надводного рельефа с подводным;
- Изолинии растра NDWI позволяют выделить границы береговой линии с субпиксельной точностью;
- Далее может потребоваться коррекция горизонтального сдвига в пределах размеров пикселя;
- Для бо́льшей части уточняемых участков есть архивная лидарная съёмка в процессе приобретения (организация тендера);
- Показана необходимость использования БПЛА самолётного типа для съёмки участков местности большой площади;
- Выполнена съёмка с использованием БПЛА различных типов ряда исследуемых территорий и выбраны методы съёмки и последующей обработки, позволяющие достичь желаемой точности получаемых моделей местности;
- Показана необходимость использования геодезической привязки снимков.

Разработка цифровых моделей рельефа для мелководных зон и прибрежных территорий оз. Байкал, Иркутского водохранилища и нижнего бьефа Иркутской ГЭС

Алексей Евгеньевич Хмельнов, А.С. Гаченко

Институт динамики систем и теории управления имени В.М. Матросова Сибирского отделения Российской академии наук, Иркутск http://idstu.irk.ru

26 августа 2022г.